46 research outputs found

    Bioaccumulation and biomagnification of microplastics in marine organisms: a review and meta-analysis of current data

    Get PDF
    Microplastic (MP) contamination has been well documented across a range of habitats and for a large number of organisms in the marine environment. Consequently, bioaccumulation, and in particular biomagnification of MPs and associated chemical additives, are often inferred to occur in marine food webs. Presented here are the results of a systematic literature review to examine whether current, published findings support the premise that MPs and associated chemical additives bioaccumulate and biomagnify across a general marine food web. First, field and laboratory-derived contamination data on marine species were standardised by sample size from a total of 116 publications. Second, following assignment of each species to one of five main trophic levels, the average uptake of MPs and of associated chemical additives was estimated across all species within each level. These uptake data within and across the five trophic levels were then critically examined for any evidence of bioaccumulation and biomagnification. Findings corroborate previous studies that MP bioaccumulation occurs within each trophic level, while current evidence around bioaccumulation of associated chemical additives is much more ambiguous. In contrast, MP biomagnification across a general marine food web is not supported by current field observations, while results from the few laboratory studies supporting trophic transfer are hampered by using unrealistic exposure conditions. Further, a lack of both field and laboratory data precludes an examination of potential trophic transfer and biomagnification of chemical additives associated with MPs. Combined, these findings indicate that, although bioaccumulation of MPs occurs within trophic levels, no clear sign of MP biomagnification in situ was observed at the higher trophic levels. Recommendations for future studies to focus on investigating ingestion, retention and depuration rates for MPs and chemical additives under environmentally realistic conditions, and on examining the potential of multi-level trophic transfer for MPs and chemical additives have been made

    Plastics for dinner: Store-bought seafood, but not wild-caught from the Great Barrier Reef, as a source of microplastics to human consumers

    Get PDF
    Seafood accounts for more than 17% of the global consumption of animal protein, with an excess of 335000 t consumed in Australia throughout 2019-2020. Recently, the presence of microplastics (MPs) within commercial seafood and the potential vectorisation of MPs to human consumers has become a significant concern for the public and the scientific community. Here, four commonly harvested wild-caught marine organisms were assessed for MP presence. These species comprise a significant proportion of the Queensland seafood industry, as well as being highly desirable to Australian consumers. The edible muscle tissue and discarded digestive tissue (GIT) of barramundi (Lates calcifer), coral trout (Plectropomus leopardus), blue leg king prawns (Melicertus latisulcatus), and Ballot's saucer scallops (Ylistrum balloti), were analysed discretely to determine the extent to which these species may be contaminated in the wild (GIT tissue), and the extent to which they themselves may act as a vector for human exposure (edible muscle tissue). Wild-caught seafood was predominantly free of MPs, with digestive tissues from two of ten coral trout containing only two fibres each. All wild-caught muscle tissue samples were free of MPs, as was the GIT of scallops, prawns, and barramundi. On the other hand, fresh, skinless barramundi muscle tissues, purchased from various commercial suppliers, were examined and found to be significantly contaminated with MPs (0.02 - 0.19 MP g-1). Overall, these results highlight the growing consensus that food can become contaminated simply by being prepared in the human environment, and the focus must shift to determining the extent of MP proliferation within the processing and point-of-sale environment

    The social and mating system of the herbivorous reef fish Sparisoma viride:One-male versus multi-male groups

    Get PDF
    We present a detailed description of the social and mating system of the protogynous reef herbivore Sparisoma viride at the fringing reef of Bonaire (Netherlands Antilles). Initial phase (IP) fish and terminal phase (TP) males occur either in one- or in multi-male groups, which are compared quantitatively with respect to the use of space, size composition, social interactions and sexual activity. One-male groups consist of one TP male plus 1-14 IP females, whereas in multi-male groups up to 14 TP males and about twice as many LP fish share a common home range. The two social units further show marked differences in vertical distribution (one-male groups are restricted to depths between 3 and 22 m, multi-male groups mainly residing <3 m), size composition (a larger proportion of small adults live in multi-male groups), size and stability of the range (larger in one-male groups) and sexual activity (daily spawning of one-male group members inside their normal home range; no activity in multi-male groups on the shallow reef). Sexual activity occurred daily, throughout the year, with no evidence for tidal tracking or major seasonal or lunar patterns. The one-male groups constitute less than 20% of the adult stock but control up to 77% of the inhabited reef. As a result they have access to higher-yield food patches and to suitable spawning sites inside their home range. Although members of both units appear to defend their common home range against intruding conspecifics, the degree of territoriality is clearly higher in one-male groups. We discuss the relative importance of food, shelter, mates and mating sites as defended resources and some life history implications. The complex social and mating system of S. viride shows much resemblance to that of another Caribbean scarid, Scarus iserti. This complexity seems to reflect the capacity of individuals to flexibly adapt their feeding, mating and life history styles to an unpredictable environment. We propose that S. viride is a good study animal to test adaptive explanations for its territorial organization and complex life history patterns

    Hepatic transcriptomic profiles from barramundi, Lates calcarifer, as a means of assessing organism health and identifying stressors in rivers in northern Queensland

    Get PDF
    Resource managers need to differentiate between sites with and without contaminants and those where contaminants cause impacts. Potentially, transcriptomes could be used to evaluate sites where contaminant-induced effects may occur, to identify causative stressors of effects and potential adverse outcomes. To test this hypothesis, the hepatic transcriptomes in Barramundi, a perciforme teleost fish, (Lates calcarifer) from two reference sites, two agriculturally impacted sites sampled during the dry season, and an impacted site sampled during the wet season were compared. The hepatic transcriptome was profiled using RNA-Seq. Multivariate analysis showed that transcriptomes were clustered based on site and by inference water quality, but not sampling time. The largest differences in transcriptomic profile were between reference sites and a site sampled during high run-off, showing that impacted sites can be identified via RNA-Seq. Transcripts with altered abundance were linked to xenobiotic metabolism, peroxisome proliferation and stress responses, indicating putative stressors with the potential for adverse outcomes in barramundi

    Sampling re-design increases power to detect change in the Great Barrier Reef’s inshore water quality

    Get PDF
    Monitoring programs are fundamental to understanding the state and trend of aquatic ecosystems. Sampling designs are a crucial component of monitoring programs and ensure that measurements evaluate progress toward clearly stated management objectives, which provides a mechanism for adaptive management. Here, we use a well-established marine monitoring program for inshore water quality in the Great Barrier Reef (GBR), Australia to investigate whether a sampling re-design has increased the program’s capacity to meet its primary objectives. Specifically, we use bootstrap resampling to assess the change in statistical power to detect temporal water quality trends in a 15-year inshore marine water quality data set that includes data from both before and after the sampling re-design. We perform a comprehensive power analysis for six water quality analytes at four separate study areas in the GBR Marine Park and find that the sampling re-design (i) increased power to detect trends in 23 of the 24 analyte-study area combinations, and (ii) resulted in an average increase in power of 34% to detect increasing or decreasing trends in water quality analytes. This increase in power is attributed more to the addition of sampling locations than increasing the sampling rate. Therefore, the sampling re-design has substantially increased the capacity of the program to detect temporal trends in inshore marine water quality. Further improvements in sampling design need to focus on the program’s capability to reliably detect trends within realistic timeframes where inshore improvements to water quality can be expected to occur

    Relative efficacy of three approaches to mitigate Crown‑of‑Thorns Starfish outbreaks on Australia’s Great Barrier Reef

    Get PDF
    Population outbreaks of Crown-of-Thorns Starfish (COTS; Acanthaster spp.) are a major contributor to loss of hard coral throughout the Indo-Pacific. On Australia’s Great Barrier Reef (GBR), management interventions have evolved over four COTS outbreaks to include: (1) manual COTS control, (2) Marine Protected Area (MPA) zoning, and, (3) water quality improvement. Here we evaluate the contribution of these three approaches to managing population outbreaks of COTS to minimize coral loss. Strategic manual control at sites reduced COTS numbers, including larger, more fecund and damaging individuals. Sustained reduction in COTS densities and improvements in hard coral cover at a site were achieved through repeated control visits. MPAs influenced initial COTS densities but only marginally influenced final hard coral cover following COTS control. Water quality improvement programs have achieved only marginal reductions in river nutrient loads delivered to the GBR and the study region. This, a subsequent COTS outbreak, and declining coral cover across the region suggest their contributions are negligible. These findings support manual control as the most direct, and only effective, means of reducing COTS densities and improving hard coral cover currently available at a site. We provide recommendations for improving control program effectiveness with application to supporting reef resilience across the Indo-Pacific
    corecore