120 research outputs found

    Co-sputtered MoRe thin films for carbon nanotube growth-compatible superconducting coplanar resonators

    Get PDF
    Molybdenum rhenium alloy thin films can exhibit superconductivity up to critical temperatures of Tc=15KT_c=15\mathrm{K}. At the same time, the films are highly stable in the high-temperature methane / hydrogen atmosphere typically required to grow single wall carbon nanotubes. We characterize molybdenum rhenium alloy films deposited via simultaneous sputtering from two sources, with respect to their composition as function of sputter parameters and their electronic dc as well as GHz properties at low temperature. Specific emphasis is placed on the effect of the carbon nanotube growth conditions on the film. Superconducting coplanar waveguide resonators are defined lithographically; we demonstrate that the resonators remain functional when undergoing nanotube growth conditions, and characterize their properties as function of temperature. This paves the way for ultra-clean nanotube devices grown in situ onto superconducting coplanar waveguide circuit elements.Comment: 8 pages, 6 figure

    Bioactivity and corrosion behavior of magnesium barrier membranes

    Get PDF
    In the current research, magnesium and its alloys have been intensively studied as resorbable implant materials. Magnesium materials combine their good mechanical properties with bioactivity, which make them interesting for guided bone regeneration and for the application as barrier membranes. In this study, the in vitro degradation behavior of thin magnesium films was investigated in cell medium and simulated body fluid. Three methods were applied to evaluate corrosion rates: measurements of (i) the gaseous volume evolved during immersion, (ii) volume change after immersion, and (iii) polarization curves. In this comparison, measurements of H2 development in Dulbecco's modified Eagle's medium showed to be the most appropriate method, exhibiting a corrosion rate of 0.5 mm·year−1. Observed oxide and carbon contamination have a high impact on controlled degradation, suggesting that surface treatment of thin foils is necessary. The bioactivity test showed positive results; more detailed tests in this area are of interest

    Comparison of three bullet recovery systems

    Get PDF
    Comparing the marks left on questioned bullets to those left on reference bullets is the main aim of a firearm identification expertise. Thus, producing reference bullets with a questioned firearm is an essential step. Different kinds of system have been developed to safely recover bullets fired from questioned firearms. However, the performance of each system and its impact on traces left on the bullets have not been addressed. Three bullet recovery systems – a horizontal water tank, a cotton tube and a recently designed fleece – were used to fire seven types of ammunition of various type, shape and casing. The bullets were then described and images of their surface were acquired with an automatic system to study the impact of each system on the bullets. The water tank is the more efficient system in terms of quality of the marks. However, it cannot be used to fire every type of ammunition. Some of them, such those used by law enforcement, tend to be damaged with this system. A way to mitigate the problem is to use the cotton or the fleece-based systems, the latter being more universal. It requires a cleaning step to remove all the fibres from the surface of the bullet, but the marks left by the weapon are still of interest

    Non-destructive low-temperature contacts to MoS2\textrm{MoS}_2 nanoribbon and nanotube quantum dots

    Get PDF
    Molybdenum disulfide nanoribbons and nanotubes are near-one dimensional semiconductors with strong spin-orbit interaction, a nanomaterial highly promising for quantum electronic applications. Here, we demonstrate that a bismuth semimetal layer between the contact metal and this nanomaterial strongly improves the properties of the contacts. Two-point resistances on the order of 100kΩ100\textrm{k}\Omega are observed at room temperature. At cryogenic temperature, Coulomb blockade is visible. The resulting stability diagrams indicate a marked absence of trap states at the contacts and the corresponding disorder, compared to previous devices using low-work function metals as contacts. Single level quantum transport is observed at temperatures below 100mK.Comment: 7 pages, 5 figure

    Spin current control of magnetism

    Full text link
    Exploring novel strategies to manipulate the order parameter of magnetic materials by electrical means is of great importance, not only for advancing our understanding of fundamental magnetism, but also for unlocking potential practical applications. A well-established concept to date uses gate voltages to control magnetic properties, such as saturation magnetization, magnetic anisotropies, coercive field, Curie temperature and Gilbert damping, by modulating the charge carrier population within a capacitor structure. Note that the induced carriers are non-spin-polarized, so the control via the electric-field is independent of the direction of the magnetization. Here, we show that the magnetocrystalline anisotropy (MCA) of ultrathin Fe films can be reversibly modified by a spin current generated in Pt by the spin Hall effect. The effect decreases with increasing Fe thickness, indicating that the origin of the modification can be traced back to the interface. Uniquely, the change in MCA due to the spin current depends not only on the polarity of the charge current but also on the direction of magnetization, i.e. the change in MCA has opposite sign when the direction of magnetization is reversed. The control of magnetism by the spin current results from the modified exchange splitting of majority- and minority-spin bands, and differs significantly from the manipulation by gate voltages via a capacitor structure, providing a functionality that was previously unavailable and could be useful in advanced spintronic devices

    Domain-width model for perpendicularly magnetized systems with Dzyaloshinskii-Moriya interaction

    Get PDF
    The influence of the Dzyaloshinskii-Moriya interaction (DMI) on stripe domains in perpendicularly magnetized thin ferromagnetic films is theoretically and experimentally investigated. We develop a domain spacing model describing the dependence of the stripe domain width on the magnetic properties of the sample. By including the magnetostatic energy of the domain walls the model correctly describes the transition from Bloch to Neel walls with increasing DMI constant. An approach to determine the magnitude of the DMI constant by fitting the stripe domain width as a function of the effective perpendicular anisotropy of wedge-shaped samples is developed and applied to several ultrathin multilayer samples based on Ni/Fe/Cu(001). The magnitude of the DMI constant arising from Fe/Ni and Ni/Fe interfaces is 0.3 +/- 0.14 meV/atom, indicating that the domain walls are in a pure chiral Neel state. Furthermore, phase diagrams of the skyrmionic bubble domain phase are recorded for two samples with different DMI constants, and by scaling the magnetic field a universal phase diagram for perpendicularly magnetized systems is obtained

    Observation of anomalously strong penetration of terahertz electric field through terahertz-opaque gold films into a GaAs/AlGaAs quantum well

    Full text link
    We observe an anomalously high electric field of terahertz (THz) radiation acting on a two-dimensional electron gas (2DEG) placed beneath a thin gold film, which, however, is supposed to be opaque at THz frequencies. We show that the anomalously strong penetration of the THz electric field through a very high conductive gold film emerges if two conditions are fulfilled simultaneously: (i) the film's thickness is less than the skin depth and (ii) the THz electric field is measured beneath the film at distances substantially smaller than the radiation wavelength. We demonstrate that under these conditions the strength of the field acting on a 2DEG is almost the same as it would be in the absence of the gold film. The effect is detected for macroscopically homogeneous perforation-free gold films illuminated by THz-laser radiation with a spot smaller than the film area. This eliminates the near-field of the edge diffraction as a possible cause of the anomalous penetration. The microscopic origin of the effect remains unexplained in its details, yet. The observed effect can be used for the development of THz devices based on two-dimensional materials requiring robust highly conducting top gates placed at less than nanometer distance from the electron gas location
    corecore