9,443 research outputs found

    Shuttle STS-2 mission communication systems RF coverage and performance predictions. Volume 1: Ascent

    Get PDF
    The RF communications capabilities and nominally expected performance for the ascent phase of the second orbital flight of the shuttle are provided. Predicted performance is given mainly in the form of plots of signal strength versus elapsed mission time for the STDN (downlink) and shuttle orbiter (uplink) receivers for the S-band PM and FM, and UHF systems. Performance of the NAV and landing RF systems is treated for RTLS abort, since in this case the spacecraft will loop around and return to the launch site. NAV and landing RF systems include TACAN, MSBLS, and C-band altimeter. Signal strength plots were produced by a computer program which combines the spacecraft trajectory, antenna patterns, transmit and receive performance characteristics, and system mathematical models. When available, measured spacecraft parameters were used in the predictions; otherwise, specified values were used. Specified ground station parameter values were also used. Thresholds and other criteria on the graphs are explained

    Optimization of circular orifice jets mixing into a heated cross flow in a cylindrical duct

    Get PDF
    To examine the mixing characteristics of circular jets in an axisymmetric can geometry, temperature measurements were obtained downstream of a row of cold jet injected into a heated cross stream. The objective was to obtain uniform mixing within one duct radius downstream of the leading edge of the jet orifices. An area weighted standard deviation of the mixture fraction was used to help quantify the degree of mixedness at a given plane. Non-reacting experiments were conducted to determine the influence of the number of jets on the mixedness in a cylindrical configuration. Results show that the number of orifices significantly impacts the mixing characteristics of jets injected from round hole orifices in a can geometry. Optimum mixing occurs when the mean jet trajectory aligns with the radius which divides the cross sectional area of the can into two equal parts at one mixer radius downstream of the leading edge of the orifice. The optimum number of holes at momentum-flux ratios of 25 and 52 is 10 and 15 respectively

    Swelling of particle-encapsulating random manifolds

    Full text link
    We study the statistical mechanics of a closed random manifold of fixed area and fluctuating volume, encapsulating a fixed number of noninteracting particles. Scaling analysis yields a unified description of such swollen manifolds, according to which the mean volume gradually increases with particle number, following a single scaling law. This is markedly different from the swelling under fixed pressure difference, where certain models exhibit criticality. We thereby indicate when the swelling due to encapsulated particles is thermodynamically inequivalent to that caused by fixed pressure. The general predictions are supported by Monte Carlo simulations of two particle-encapsulating model systems -- a two-dimensional self-avoiding ring and a three-dimensional self-avoiding fluid vesicle. In the former the particle-induced swelling is thermodynamically equivalent to the pressure-induced one whereas in the latter it is not.Comment: 8 pages, 6 figure

    Octet-Baryon Form Factors in the Diquark Model

    Full text link
    We present an alternative parameterization of the quark-diquark model of baryons which particularly takes care of the most recent proton electric form-factor data from the E136 experiment at SLAC. In addition to electromagnetic form factors of the nucleon, for which good agreement with data is achieved, we discuss the weak axial vector form factor of the nucleon as well as electromagnetic form factors of Λ\Lambda and Σ\Sigma hyperons. Technical advance in calculating the pertinent analytic expressions within perturbative quantum chromodynamics is gained by formulating the wave function of the quark-diquark system in a covariant way. Finally, we also comment on the influence of Sudakov corrections within the scope of the diquark model.Comment: 16 pages, WU-B 93-07, latex, uuencoded postscript files of 7 figures appended at the end of the latex fil

    High-pressure phases and transitions of the layered alkaline earth nitridosilicates SrSiN2 and BaSiN2

    Get PDF
    We investigate the high-pressure phase diagram of SrSiN2 and BaSiN2 with density-functional calculation. Searching a manifold of possible candidate structures, we propose new structural modifications of SrSiN2 and BaSiN2 attainable in high-pressure experiments. The monoclinic ground state of SrSiN2 transforms at 3 GPa into an orthorhombic BaSiN2 type. At 14 GPa a CaSiN2-type structure becomes the most stable configuration of SrSiN2. A hitherto unknown Pbcm modification is adopted at 85 GPa and, finally, at 131 GPa a LiFeO2-type structure. The higher homologue BaSiN2 transforms to a CaSiN2 type at 41 GPa and further to a Pbcm modification at 105 GPa. Both systems follow the pressure-coordination rule: the coordination environment of Si increases from tetrahedral through trigonal bipyramidal to octahedral. Some high-pressure phases are related in structure through simple group–subgroup mechanisms, indicating displacive phase transformations with low activation barriers

    Exclusive Photoproduction of Large Momentum-Transfer K and K* Mesons

    Full text link
    The reactions gamma p -> K+ Lambda and gamma p -> K* Lambda are analyzed within perturbative QCD, allowing for diquarks as quasi-elementary constituents of baryons. The diquark-model parameters and the quark-diquark distribution amplitudes of proton and Lambda are taken from previous investigations of electromagnetic baryon form factors and Compton-scattering off protons. Unpolarized differential cross sections and polarization observables are computed for different choices of the K and K* distribution amplitudes. The asymptotic form of the K distribution amplitude (proportional to x1 x2) is found to provide a satisfactory description of the K photoproduction data.Comment: 32 pages, 7 figures available as tared, compressed and uuencoded PS-file

    Secondary organic aerosol formation from m-xylene, toluene, and benzene

    Get PDF
    Secondary organic aerosol (SOA) formation from the photooxidation of m-xylene, toluene, and benzene is investigated in the Caltech environmental chambers. Experiments are performed under two limiting NOx conditions; under high-NOx conditions the peroxy radicals (RO2) react only with NO, while under low-NOx conditions they react only with HO2. For all three aromatics studied (m-xylene, toluene, and benzene), the SOA yields (defined as the ratio of the mass of organic aerosol formed to the mass of parent hydrocarbon reacted) under low-NOx conditions substantially exceed those under high-NOx conditions, suggesting the importance of peroxy radical chemistry in SOA formation. Under low-NOx conditions, the SOA yields for m-xylene, toluene, and benzene are constant (36%, 30%, and 37%, respectively), indicating that the SOA formed is effectively nonvolatile under the range of Mo(>10 μg m−3) studied. Under high-NOx conditions, aerosol growth occurs essentially immediately, even when NO concentration is high. The SOA yield curves exhibit behavior similar to that observed by Odum et al. (1996, 1997a, b), although the values are somewhat higher than in the earlier study. The yields measured under high-NOx conditions are higher than previous measurements, suggesting a "rate effect" in SOA formation, in which SOA yields are higher when the oxidation rate is faster. Experiments carried out in the presence of acidic seed aerosol reveal no change of SOA yields from the aromatics as compared with those using neutral seed aerosol
    • …
    corecore