11 research outputs found

    Magnetic field compatible hybrid circuit quantum electrodynamics

    No full text
    Majorana bound states (MBSs) are novel particles predicted to be created when superconductor/semiconductor hybrid structures with strong spin-orbit coupling are subjected to strong magnetic fields. Expected to exhibit non-Abelian exchange statistics, they could form the basis of a new kind of quantum computer that is inherently protected from environmental noise, a common problem that has frustrated other quantum computing platforms. The current techniques used to measure these particles are highly sensitive, having provided the best evidence yet for their existence, but they are intrinsically too slow to form the basis of a useful quantum computer. To remedy this, this thesis integrates exotic materials into high frequency superconducting circuits that have been engineered to be resilient to strong magnetic fields, creating hybrid devices that potentially allow for fast and precise measurement and control of MBSs and their properties.Several proposals to demonstrate the novel exchange statistics of MBSs use a specific type of superconducting qubit, the `transmon', for fast readout of the state of the MBSs. Problematically, the strong magnetic fields required to induce MBSs would destroy the superconductivity traditional transmons rely on, preventing them from operating as intended. To resolve this, the key constituent components of the transmon, the superconducting resonator and the Josephson junction have been engineered separately to become resilient to strong magnetic fields. Chapter 4 explores how nanofabrication techniques and careful consideration of the properties of thin superconducting films can be used to engineer superconducting co-planar waveguide resonators that remain operational in strong parallel magnetic fields of \SI{6}{\tesla} and perpendicular magnetic fields of \SI{20}{\milli \tesla}, an order of magnitude greater than previously reported. Building on the results of Chapter 4, Chapter 5 utilises a graphene based Josephson junction, where the monoatomic thickness of the graphene provides an inherent protection against parallel magnetic fields, allowing us to demonstrate operation of a transmon circuit at a parallel magnetic field of \SI{1}{\tesla}.Advances in nanowire material growth intended to improve the signatures of MBS are used in Chapter 6 to create a low power, highly coherent on-chip microwave source. With broad potential applications in superconducting circuits, it demonstrates a platform well suited for the detection of unique radiation that MBSs are predicted to emit. The thesis is concluded by Chapter 7, which describes the engineering and development of a nanowire based transmon qubit capable of measuring key properties of MBSs in the qubit's energy spectrum.Casimir PhD Series 2019-23QRD/Kouwenhoven La

    Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions

    No full text
    Circuit quantum electrodynamics has proven to be a powerful tool to probe mesoscopic effects in hybrid systems and is used in several quantum computing (QC) proposals that require a transmon qubit able to operate in strong magnetic fields. To address this we integrate monolayer graphene Josephson junctions into microwave frequency superconducting circuits to create graphene based transmons. Using dispersive microwave spectroscopy we resolve graphene's characteristic band dispersion and observe coherent electronic interference effects confirming the ballistic nature of our graphene Josephson junctions. We show that the monoatomic thickness of graphene renders the device insensitive to an applied magnetic field, allowing us to perform energy level spectroscopy of the circuit in a parallel magnetic field of 1 T, an order of magnitude higher than previous studies. These results establish graphene based superconducting circuits as a promising platform for QC and the study of mesoscopic quantum effects that appear in strong magnetic fields.QRD/Kouwenhoven LabQuTechApplied SciencesQRD/Goswami La

    High resolution radar rainfall for urban pluvial flood managementmanagement: Lessons learnt from 10 pilots in North-West Europe within the RainGain project

    No full text
    Precipitation and catchment information needs to be available at high resolution to reliably predict hydrological response and potential flooding in urban catchments. While recent advances have been made in weather radar technology and availability of DTM for urban flood modelling, the question is whether these are sufficient to provide reliable predictions for urban pluvial flood control. The RainGain project (EU-Interreg IVB NWE) brings together radar technologists and hydrologists to explore a variety of rainfall sensors, rainfall data processing techniques and hydrodynamic models for the purpose of fine-scale representation of urban hydrodynamic response. High resolution rainfall and hydrodynamic modelling techniques are implemented at 10 different pilot locations under real-life conditions. In this paper, the pilot locations, configurations of rainfall sensors (including X-Band and C-Band radars, rain gauges and disdrometers) and modelling approaches adopted within the RainGain project are introduced. Initial results are presented of hydrodynamic modelling using high resolution precipitation inputs from dual-polarisation X-band radar, followed by a discussion of differences in hydrodynamic response behaviour between the pilots.Water ManagementCivil Engineering and Geoscience

    The need for high resolution precipitation data to improve urban drainage modelling

    No full text
    In this study high resolution precipitation data are used, derived from polarimetric X-band radar at 100 m, 1 min resolution. The data are used to study the impact of different space-time resolutions of rainfall input on urban hydrodynamic modelling response for 9 storms, in 7 urban catchments. The results show that hydrodynamic response behaviour was highly sensitive to variations in rainfall space-time resolution, more strongly so for changes in temporal than in spatial resolution. Under- and overestimations of flow peaks amounted to up to 100% with respect to the original 100 m, 1 minute rainfall input.Water ManagementCivil Engineering and Geoscience

    Weather radar for urban hydrological applications: Lessons learnt and research needs identified from 4 pilot catchments in North-West Europe

    No full text
    This study investigates the impact of rainfall estimates of different spatial resolutions on the hydraulic outputs of the models of four of the EU RainGain project’s pilot locations (the Cranbrook catchment (UK), the Herent catchment (Belgium), the Morée-Sausset catchment (France) and the Kralingen District (The Netherlands)). Two storm events, one convective and one stratiform, measured by a polarimetric X-band radar located in Cabauw (The Netherlands) were selected for analysis. The original radar estimates, at 100 m and 1 min resolutions, were aggregated to a spatial resolution of 1000 m. These estimates were then applied to the high-resolution semi-distributed hydraulic models of the four urban catchments, all of which have similar size (between 5 and 8 km2), but different morphological, hydrological and hydraulic characteristics. When doing so, methodologies for standardising rainfall inputs and making results comparable were implemented. The response of the different catchments to rainfall inputs of varying spatial resolution is analysed in the light of model configuration, catchment and storm characteristics. Rather surprisingly, the results show that for the two events under consideration the spatial resolution (i.e.100 m vs 1000 m) of rainfall inputs does not have a significant influence on the outputs of urban drainage models. The present study will soon be extended to more storms as well as model structures and resolutions, with the final aim of identifying critical spatial-temporal resolutions for urban catchment modelling in relation to catchment and storm event characteristicsWater ManagementCivil Engineering and Geoscience

    Magnetic-Field-Resilient Superconducting Coplanar-Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experiments

    Get PDF
    Superconducting coplanar-waveguide resonators that can operate in strong magnetic fields are important tools for a variety of high-frequency superconducting devices. Magnetic fields degrade resonator performance by creating Abrikosov vortices that cause resistive losses and frequency fluctuations or suppress the superconductivity entirely. To mitigate these effects, we investigate lithographically defined artificial defects in resonators fabricated from Nb-Ti-N superconducting films. We show that by controlling the vortex dynamics, the quality factor of resonators in perpendicular magnetic fields can be greatly enhanced. Coupled with the restriction of the device geometry to enhance the superconductors critical field, we demonstrate stable resonances that retain quality factors ≃105 at the single-photon power level in perpendicular magnetic fields up to B⊥ ≃20mT and parallel magnetic fields up to B⥠≃6T. We demonstrate the effectiveness of this technique for hybrid systems by integrating an In-Sb nanowire into a field-resilient superconducting resonator and use it to perform fast charge readout of a gate-defined double quantum dot at B=1T.QRD/Kouwenhoven LabQuTechApplied SciencesBUS/GeneralQCD/DiCarlo LabQN/Kouwenhoven La

    Impact of spatial and temporal resolution of rainfall inputs on urban hydrodynamic modelling outputs: A multi-catchment investigation

    Get PDF
    Urban catchments are typically characterised by high spatial variability and fast runoff processes resulting in short response times. Hydrological analysis of such catchments requires high resolution precipitation and catchment information to properly represent catchment response. This study investigated the impact of rainfall input resolution on the outputs of detailed hydrodynamic models of seven urban catchments in North-West Europe. The aim was to identify critical rainfall resolutions for urban catchments to properly characterise catchment response. Nine storm events measured by a dual-polarimetric X-band weather radar, located in the Cabauw Experimental Site for Atmospheric Research (CESAR) of the Netherlands, were selected for analysis. Based on the original radar estimates, at 100 m and 1 min resolutions, 15 different combinations of coarser spatial and temporal resolutions, up to 3000 m and 10 min, were generated. These estimates were then applied to the operational semi-distributed hydrodynamic models of the urban catchments, all of which have similar size (between 3 and 8 km2), but different morphological, hydrological and hydraulic characteristics. When doing so, methodologies for standardising model outputs and making results comparable were implemented. Results were analysed in the light of storm and catchment characteristics. Three main features were observed in the results: (1) the impact of rainfall input resolution decreases rapidly as catchment drainage area increases; (2) in general, variations in temporal resolution of rainfall inputs affect hydrodynamic modelling results more strongly than variations in spatial resolution; (3) there is a strong interaction between the spatial and temporal resolution of rainfall input estimates. Based upon these results, methods to quantify the impact of rainfall input resolution as a function of catchment size and spatial–temporal characteristics of storms are proposed and discussed.Geoscience & Remote SensingCivil Engineering and Geoscience

    An examination of several high resolution schemes applied to complex problems in high speed flows /

    No full text
    A comparative study of five upwind schemes was performed to evaluate their ability accurately model the convective fluxes of the Euler equations for problems containing complex shock structure. The schemes investigated used a variety of Reimann solvers and obtained higher order accuracy using either a MUSCL or non-MUSCL approach. The MUSCL-type schemes included the flux vector split formulations of Steiger-Warming and van Leer and the flux difference split approach of Roe. The Non-MUSCL schemes included the Symmetric and Upwind TVD methods of Yee, and Harten and Yee. Two central difference schemes provide a basis for the evaluation of these upwind methods. The comparison was performed using identical meshes and convergence criteria. In a supersonic blunt body flow, all the upwind schemes displayed comparably resolved bow shocks, independent of free stream Mach number. However, a complex type IV shock on cowl lip example pointed out significant difference in the accuracy and convergence behavior of the schemes. A comparison of the flow structure shown by the various algorithms on identical grids indicated that the discrete solutions obtained with Upwind TVD and Roe flux difference splitting were the least diffusive of the upwind methods considered.Research supported by the United States Air Force Flight Dynamics Directorate, and performed in part by DLR, Institute for Design Aerodynamics, Flughafen, Braunschweig, West Germany.Final Report for Period June 1991- December 1991."February 1992."Includes bibliographical references (pages 21-25).A comparative study of five upwind schemes was performed to evaluate their ability accurately model the convective fluxes of the Euler equations for problems containing complex shock structure. The schemes investigated used a variety of Reimann solvers and obtained higher order accuracy using either a MUSCL or non-MUSCL approach. The MUSCL-type schemes included the flux vector split formulations of Steiger-Warming and van Leer and the flux difference split approach of Roe. The Non-MUSCL schemes included the Symmetric and Upwind TVD methods of Yee, and Harten and Yee. Two central difference schemes provide a basis for the evaluation of these upwind methods. The comparison was performed using identical meshes and convergence criteria. In a supersonic blunt body flow, all the upwind schemes displayed comparably resolved bow shocks, independent of free stream Mach number. However, a complex type IV shock on cowl lip example pointed out significant difference in the accuracy and convergence behavior of the schemes. A comparison of the flow structure shown by the various algorithms on identical grids indicated that the discrete solutions obtained with Upwind TVD and Roe flux difference splitting were the least diffusive of the upwind methods considered.Mode of access: Internet

    Search for anomaly-mediated supersymmetry breaking with the ATLAS detector based on a disappearing-track signature in pp collisions at sqrt(s) = 7TeV$

    Get PDF
    none3019G. Aad;B. Abbott;J. Abdallah;A. A. Abdelalim;A. Abdesselam;O. Abdinov;B. Abi;M. Abolins;H. Abramowicz;H. Abreu;E. Acerbi;B. S. Acharya;D. L. Adams;T. N. Addy;J. Adelman;M. Aderholz;S. Adomeit;P. Adragna;T. Adye;S. Aefsky;J. A. Aguilar-Saavedra;M. Aharrouche;S. P. Ahlen;F. Ahles;A. Ahmad;M. Ahsan;G. Aielli;T. Akdogan;T. P. A. Åkesson;G. Akimoto;A. V. Akimov;A. Akiyama;M. S. Alam;M. A. Alam;J. Albert;S. Albrand;M. Aleksa;I. N. Aleksandrov;F. Alessandria;C. Alexa;G. Alexander;G. Alexandre;T. Alexopoulos;M. Alhroob;M. Aliev;G. Alimonti;J. Alison;M. Aliyev;P. P. Allport;S. E. Allwood-Spiers;J. Almond;A. Aloisio;R. Alon;A. Alonso;B. Alvarez Gonzalez;M. G. Alviggi;K. Amako;P. Amaral;C. Amelung;V. V. Ammosov;A. Amorim;G. Amorós;N. Amram;C. Anastopoulos;L. S. Ancu;N. Andari;T. Andeen;C. F. Anders;G. Anders;K. J. Anderson;A. Andreazza;V. Andrei;M-L. Andrieux;X. S. Anduaga;A. Angerami;F. Anghinolfi;A. Anisenkov;N. Anjos;A. Annovi;A. Antonaki;M. Antonelli;A. Antonov;J. Antos;F. Anulli;S. Aoun;L. Aperio Bella;R. Apolle;G. Arabidze;I. Aracena;Y. Arai;A. T. H. Arce;J. P. Archambault;S. Arfaoui;J-F. Arguin;E. Arik;M. Arik;A. J. Armbruster;O. Arnaez;C. Arnault;A. Artamonov;G. Artoni;D. Arutinov;S. Asai;R. Asfandiyarov;S. Ask;B. Åsman;L. Asquith;K. Assamagan;A. Astbury;A. Astvatsatourov;B. Aubert;E. Auge;K. Augsten;M. Aurousseau;G. Avolio;R. Avramidou;D. Axen;C. Ay;G. Azuelos;Y. Azuma;M. A. Baak;G. Baccaglioni;C. Bacci;A. M. Bach;H. Bachacou;K. Bachas;G. Bachy;M. Backes;M. Backhaus;E. Badescu;P. Bagnaia;S. Bahinipati;Y. Bai;D. C. Bailey;T. Bain;J. T. Baines;O. K. Baker;M. D. Baker;S. Baker;E. Banas;P. Banerjee;Sw. Banerjee;D. Banfi;A. Bangert;V. Bansal;H. S. Bansil;L. Barak;S. P. Baranov;A. Barashkou;A. Barbaro Galtieri;T. Barber;E. L. Barberio;D. Barberis;M. Barbero;D. Y. Bardin;T. Barillari;M. Barisonzi;T. Barklow;N. Barlow;B. M. Barnett;R. M. Barnett;A. Baroncelli;G. Barone;A. J. Barr;F. Barreiro;J. Barreiro Guimarães da Costa;P. Barrillon;R. Bartoldus;A. E. Barton;V. Bartsch;R. L. Bates;L. Batkova;J. R. Batley;A. Battaglia;M. Battistin;G. Battistoni;F. Bauer;H. S. Bawa;S. Beale;B. Beare;T. Beau;P. H. Beauchemin;R. Beccherle;P. Bechtle;H. P. Beck;S. Becker;M. Beckingham;K. H. Becks;A. J. Beddall;A. Beddall;S. Bedikian;V. A. Bednyakov;C. P. Bee;M. Begel;S. Behar Harpaz;P. K. Behera;M. Beimforde;C. Belanger-Champagne;P. J. Bell;W. H. Bell;G. Bella;L. Bellagamba;F. Bellina;M. Bellomo;A. Belloni;O. Beloborodova;K. Belotskiy;O. Beltramello;S. Ben Ami;O. Benary;D. Benchekroun;C. Benchouk;M. Bendel;N. Benekos;Y. Benhammou;J. A. Benitez Garcia;D. P. Benjamin;M. Benoit;J. R. Bensinger;K. Benslama;S. Bentvelsen;D. Berge;E. Bergeaas Kuutmann;N. Berger;F. Berghaus;E. Berglund;J. Beringer;P. Bernat;R. Bernhard;C. Bernius;T. Berry;C. Bertella;A. Bertin;F. Bertinelli;F. Bertolucci;M. I. Besana;N. Besson;S. Bethke;W. Bhimji;R. M. Bianchi;M. Bianco;O. Biebel;S. P. Bieniek;K. Bierwagen;J. Biesiada;M. Biglietti;H. Bilokon;M. Bindi;S. Binet;A. Bingul;C. Bini;C. Biscarat;U. Bitenc;K. M. Black;R. E. Blair;J.-B. Blanchard;G. Blanchot;T. Blazek;C. Blocker;J. Blocki;A. Blondel;W. Blum;U. Blumenschein;G. J. Bobbink;V. B. Bobrovnikov;S. S. Bocchetta;A. Bocci;C. R. Boddy;M. Boehler;J. Boek;N. Boelaert;S. Böser;J. A. Bogaerts;A. Bogdanchikov;A. Bogouch;C. Bohm;V. Boisvert;T. Bold;V. Boldea;N. M. Bolnet;M. Bona;V. G. Bondarenko;M. Bondioli;M. Boonekamp;G. Boorman;C. N. Booth;S. Bordoni;C. Borer;A. Borisov;G. Borissov;I. Borjanovic;S. Borroni;K. Bos;D. Boscherini;M. Bosman;H. Boterenbrood;D. Botterill;J. Bouchami;J. Boudreau;E. V. Bouhova-Thacker;C. Bourdarios;N. Bousson;A. Boveia;J. Boyd;I. R. Boyko;N. I. Bozhko;I. Bozovic-Jelisavcic;J. Bracinik;A. Braem;P. Branchini;G. W. Brandenburg;A. Brandt;G. Brandt;O. Brandt;U. Bratzler;B. Brau;J. E. Brau;H. M. Braun;B. Brelier;J. Bremer;R. Brenner;S. Bressler;D. Breton;D. Britton;F. M. Brochu;I. Brock;R. Brock;T. J. Brodbeck;E. Brodet;F. Broggi;C. Bromberg;J. Bronner;G. Brooijmans;W. K. Brooks;G. Brown;H. Brown;P. A. Bruckman de Renstrom;D. Bruncko;R. Bruneliere;S. Brunet;A. Bruni;G. Bruni;M. Bruschi;T. Buanes;Q. Buat;F. Bucci;J. Buchanan;N. J. Buchanan;P. Buchholz;R. M. Buckingham;A. G. Buckley;S. I. Buda;I. A. Budagov;B. Budick;V. Büscher;L. Bugge;D. Buira-Clark;O. Bulekov;M. Bunse;T. Buran;H. Burckhart;S. Burdin;T. Burgess;S. Burke;E. Busato;P. Bussey;C. P. Buszello;F. Butin;B. Butler;J. M. Butler;C. M. Buttar;J. M. Butterworth;W. Buttinger;S. Cabrera Urbán;D. Caforio;O. Cakir;P. Calafiura;G. Calderini;P. Calfayan;R. Calkins;L. P. Caloba;R. Caloi;D. Calvet;S. Calvet;R. Camacho Toro;P. Camarri;M. Cambiaghi;D. Cameron;L. M. Caminada;S. Campana;M. Campanelli;V. Canale;F. Canelli;A. Canepa;J. Cantero;L. Capasso;M. D. M. Capeans Garrido;I. Caprini;M. Caprini;D. Capriotti;M. Capua;R. Caputo;C. Caramarcu;R. Cardarelli;T. Carli;G. Carlino;L. Carminati;B. Caron;S. Caron;G. D. Carrillo Montoya;A. A. Carter;J. R. Carter;J. Carvalho;D. Casadei;M. P. Casado;M. Cascella;C. Caso;A. M. Castaneda Hernandez;E. Castaneda-Miranda;V. Castillo Gimenez;N. F. Castro;G. Cataldi;F. Cataneo;A. Catinaccio;J. R. Catmore;A. Cattai;G. Cattani;S. Caughron;D. Cauz;P. Cavalleri;D. Cavalli;M. Cavalli-Sforza;V. Cavasinni;F. Ceradini;A. S. Cerqueira;A. Cerri;L. Cerrito;F. Cerutti;S. A. Cetin;F. Cevenini;A. Chafaq;D. Chakraborty;K. Chan;B. Chapleau;J. D. Chapman;J. W. Chapman;E. Chareyre;D. G. Charlton;V. Chavda;C. A. Chavez Barajas;S. Cheatham;S. Chekanov;S. V. Chekulaev;G. A. Chelkov;M. A. Chelstowska;C. Chen;H. Chen;S. Chen;T. Chen;X. Chen;S. Cheng;A. Cheplakov;V. F. Chepurnov;R. Cherkaoui El Moursli;V. Chernyatin;E. Cheu;S. L. Cheung;L. Chevalier;G. Chiefari;L. Chikovani;J. T. Childers;A. Chilingarov;G. Chiodini;M. V. Chizhov;G. Choudalakis;S. Chouridou;I. A. Christidi;A. Christov;D. Chromek-Burckhart;M. L. Chu;J. Chudoba;G. Ciapetti;K. Ciba;A. K. Ciftci;R. Ciftci;D. Cinca;V. Cindro;M. D. Ciobotaru;C. Ciocca;A. Ciocio;M. Cirilli;M. Citterio;M. Ciubancan;A. Clark;P. J. Clark;W. Cleland;J. C. Clemens;B. Clement;C. Clement;R. W. Clifft;Y. Coadou;M. Cobal;A. Coccaro;J. Cochran;P. Coe;J. G. Cogan;J. Coggeshall;E. Cogneras;C. D. Cojocaru;J. Colas;A. P. Colijn;N. J. Collins;C. Collins-Tooth;J. Collot;G. Colon;P. Conde Muiño;E. Coniavitis;M. C. Conidi;M. Consonni;V. Consorti;S. Constantinescu;C. Conta;F. Conventi;J. Cook;M. Cooke;B. D. Cooper;A. M. Cooper-Sarkar;K. Copic;T. Cornelissen;M. Corradi;F. Corriveau;A. Cortes-Gonzalez;G. Cortiana;G. Costa;M. J. Costa;D. Costanzo;T. Costin;D. Côté;R. Coura Torres;L. Courneyea;G. Cowan;C. Cowden;B. E. Cox;K. Cranmer;F. Crescioli;M. Cristinziani;G. Crosetti;R. Crupi;S. Crépé-Renaudin;C.-M. Cuciuc;C. Cuenca Almenar;T. Cuhadar Donszelmann;M. Curatolo;C. J. Curtis;C. Cuthbert;P. Cwetanski;H. Czirr;Z. Czyczula;S. D’Auria;M. D’Onofrio;A. D’Orazio;P. V. M. Silva;C. Via;W. Dabrowski;T. Dai;C. Dallapiccola;M. Dam;M. Dameri;D. S. Damiani;H. O. Danielsson;D. Dannheim;V. Dao;G. Darbo;G. L. Darlea;C. Daum;W. Davey;T. Davidek;N. Davidson;R. Davidson;E. Davies;M. Davies;A. R. Davison;Y. Davygora;E. Dawe;I. Dawson;J. W. Dawson;R. K. Daya-Ishmukhametova;K. De;R. Asmundis;S. Castro;P. E. Castro Faria Salgado;S. Cecco;J. Graat;N. Groot;P. Jong;C. Taille;H. Torre;B. Lotto;L. Mora;L. Nooij;D. Pedis;A. Salvo;U. Sanctis;A. Santo;J. B. Vivie De Regie;S. Dean;W. J. Dearnaley;R. Debbe;C. Debenedetti;D. V. Dedovich;J. Degenhardt;M. Dehchar;C. Papa;J. Peso;T. Prete;T. Delemontex;M. Deliyergiyev;A. Dell’Acqua;L. Dell’Asta;M. Pietra;D. Volpe;M. Delmastro;N. Delruelle;P. A. Delsart;C. Deluca;S. Demers;M. Demichev;B. Demirkoz;J. Deng;S. P. Denisov;D. Derendarz;J. E. Derkaoui;F. Derue;P. Dervan;K. Desch;E. Devetak;P. O. Deviveiros;A. Dewhurst;B. DeWilde;S. Dhaliwal;R. Dhullipudi;A. Ciaccio;L. Ciaccio;A. Girolamo;B. Girolamo;S. Luise;A. Mattia;B. Micco;R. Nardo;A. Simone;R. Sipio;M. A. Diaz;F. Diblen;E. B. Diehl;J. Dietrich;T. A. Dietzsch;S. Diglio;K. Dindar Yagci;J. Dingfelder;C. Dionisi;P. Dita;S. Dita;F. Dittus;F. Djama;T. Djobava;M. A. B. Vale;A. Valle Wemans;T. K. O. Doan;M. Dobbs;R. Dobinson;D. Dobos;E. Dobson;J. Dodd;C. Doglioni;T. Doherty;Y. Doi;J. Dolejsi;I. Dolenc;Z. Dolezal;B. A. Dolgoshein;T. Dohmae;M. Donadelli;M. Donega;J. Donini;J. Dopke;A. Doria;A. Anjos;M. Dosil;A. Dotti;M. T. Dova;J. D. Dowell;A. D. Doxiadis;A. T. Doyle;Z. Drasal;J. Drees;N. Dressnandt;H. Drevermann;C. Driouichi;M. Dris;J. Dubbert;S. Dube;E. Duchovni;G. Duckeck;A. Dudarev;F. Dudziak;M. Dührssen;I. P. Duerdoth;L. Duflot;M-A. Dufour;M. Dunford;H. Duran Yildiz;R. Duxfield;M. Dwuznik;F. Dydak;M. Düren;W. L. Ebenstein;J. Ebke;S. Eckweiler;K. Edmonds;C. A. Edwards;N. C. Edwards;W. Ehrenfeld;T. Ehrich;T. Eifert;G. Eigen;K. Einsweiler;E. Eisenhandler;T. Ekelof;M. Kacimi;M. Ellert;S. Elles;F. Ellinghaus;K. Ellis;N. Ellis;J. Elmsheuser;M. Elsing;D. Emeliyanov;R. Engelmann;A. Engl;B. Epp;A. Eppig;J. Erdmann;A. Ereditato;D. Eriksson;J. Ernst;M. Ernst;J. Ernwein;D. Errede;S. Errede;E. Ertel;M. Escalier;C. Escobar;X. Espinal Curull;B. Esposito;F. Etienne;A. I. Etienvre;E. Etzion;D. Evangelakou;H. Evans;L. Fabbri;C. Fabre;R. M. Fakhrutdinov;S. Falciano;Y. Fang;M. Fanti;A. Farbin;A. Farilla;J. Farley;T. Farooque;S. M. Farrington;P. Farthouat;P. Fassnacht;D. Fassouliotis;B. Fatholahzadeh;A. Favareto;L. Fayard;S. Fazio;R. Febbraro;P. Federic;O. L. Fedin;W. Fedorko;M. Fehling-Kaschek;L. Feligioni;D. Fellmann;C. Feng;E. J. Feng;A. B. Fenyuk;J. Ferencei;J. Ferland;W. Fernando;S. Ferrag;J. Ferrando;V. Ferrara;A. Ferrari;P. Ferrari;R. Ferrari;A. Ferrer;M. L. Ferrer;D. Ferrere;C. Ferretti;A. Ferretto Parodi;M. Fiascaris;F. Fiedler;A. Filipčič;A. Filippas;F. Filthaut;M. Fincke-Keeler;M. C. N. Fiolhais;L. Fiorini;A. Firan;G. Fischer;P. Fischer;M. J. Fisher;M. Flechl;I. Fleck;J. Fleckner;P. Fleischmann;S. Fleischmann;T. Flick;L. R. Flores Castillo;M. J. Flowerdew;M. Fokitis;T. Fonseca Martin;J. Fopma;D. A. Forbush;A. Formica;A. Forti;D. Fortin;J. M. Foster;D. Fournier;A. Foussat;A. J. Fowler;K. Fowler;H. Fox;P. Francavilla;S. Franchino;D. Francis;T. Frank;M. Franklin;S. Franz;M. Fraternali;S. Fratina;S. T. French;F. Friedrich;R. Froeschl;D. Froidevaux;J. A. Frost;C. Fukunaga;E. Fullana Torregrosa;J. Fuster;C. Gabaldon;O. Gabizon;T. Gadfort;S. Gadomski;G. Gagliardi;P. Gagnon;C. Galea;E. J. Gallas;V. Gallo;B. J. Gallop;P. Gallus;K. K. Gan;Y. S. Gao;V. A. Gapienko;A. Gaponenko;F. Garberson;M. Garcia-Sciveres;C. García;J. E. García Navarro;R. W. Gardner;N. Garelli;H. Garitaonandia;V. Garonne;J. Garvey;C. Gatti;G. Gaudio;O. Gaumer;B. Gaur;L. Gauthier;I. L. Gavrilenko;C. Gay;G. Gaycken;J-C. Gayde;E. N. Gazis;P. Ge;C. N. P. Gee;D. A. A. Geerts;Ch. Geich-Gimbel;K. Gellerstedt;C. Gemme;A. Gemmell;M. H. Genest;S. Gentile;M. George;S. George;P. Gerlach;A. Gershon;C. Geweniger;H. Ghazlane;N. Ghodbane;B. Giacobbe;S. Giagu;V. Giakoumopoulou;V. Giangiobbe;F. Gianotti;B. Gibbard;A. Gibson;S. M. Gibson;L. M. Gilbert;V. Gilewsky;D. Gillberg;A. R. Gillman;D. M. Gingrich;J. Ginzburg;N. Giokaris;M. P. Giordani;R. Giordano;F. M. Giorgi;P. Giovannini;P. F. Giraud;D. Giugni;M. Giunta;P. Giusti;B. K. Gjelsten;L. K. Gladilin;C. Glasman;J. Glatzer;A. Glazov;K. W. Glitza;G. L. Glonti;J. Godfrey;J. Godlewski;M. Goebel;T. Göpfert;C. Goeringer;C. Gössling;T. Göttfert;S. Goldfarb;T. Golling;S. N. Golovnia;A. Gomes;L. S. Gomez Fajardo;R. Gonçalo;J. Goncalves Pinto Firmino Da Costa;L. Gonella;A. Gonidec;S. Gonzalez;S. González de la Hoz;G. Gonzalez Parra;M. L. Gonzalez Silva;S. Gonzalez-Sevilla;J. J. Goodson;L. Goossens;P. A. Gorbounov;H. A. Gordon;I. Gorelov;G. Gorfine;B. Gorini;E. Gorini;A. Gorišek;E. Gornicki;S. A. Gorokhov;V. N. Goryachev;B. Gosdzik;M. Gosselink;M. I. Gostkin;I. Gough Eschrich;M. Gouighri;D. Goujdami;M. P. Goulette;A. G. Goussiou;C. Goy;S. Gozpinar;I. Grabowska-Bold;P. Grafström;K-J. Grahn;F. Grancagnolo;S. Grancagnolo;V. Grassi;V. Gratchev;N. Grau;H. M. Gray;J. A. Gray;E. Graziani;O. G. Grebenyuk;T. Greenshaw;Z. D. Greenwood;K. Gregersen;I. M. Gregor;P. Grenier;J. Griffiths;N. Grigalashvili;A. A. Grillo;S. Grinstein;Y. V. Grishkevich;J.-F. Grivaz;M. Groh;E. Gross;J. Grosse-Knetter;J. Groth-Jensen;K. Grybel;V. J. Guarino;D. Guest;C. Guicheney;A. Guida;S. Guindon;H. Guler;J. Gunther;B. Guo;J. Guo;A. Gupta;Y. Gusakov;V. N. Gushchin;A. Gutierrez;P. Gutierrez;N. Guttman;O. Gutzwiller;C. Guyot;C. Gwenlan;C. B. Gwilliam;A. Haas;S. Haas;C. Haber;H. K. Hadavand;D. R. Hadley;P. Haefner;F. Hahn;S. Haider;Z. Hajduk;H. Hakobyan;D. Hall;J. Haller;K. Hamacher;P. Hamal;M. Hamer;A. Hamilton;S. Hamilton;H. Han;L. Han;K. Hanagaki;K. Hanawa;M. Hance;C. Handel;P. Hanke;J. R. Hansen;J. B. Hansen;J. D. Hansen;P. H. Hansen;P. Hansson;K. Hara;G. A. Hare;T. Harenberg;S. Harkusha;D. Harper;R. D. Harrington;O. M. Harris;K. Harrison;J. Hartert;F. Hartjes;T. Haruyama;A. Harvey;S. Hasegawa;Y. Hasegawa;S. Hassani;M. Hatch;D. Hauff;S. Haug;M. Hauschild;R. Hauser;M. Havranek;B. M. Hawes;C. M. Hawkes;R. J. Hawkings;D. Hawkins;T. Hayakawa;T. Hayashi;D. Hayden;H. S. Hayward;S. J. Haywood;E. Hazen;M. He;S. J. Head;V. Hedberg;L. Heelan;S. Heim;B. Heinemann;S. Heisterkamp;L. Helary;C. Heller;M. Heller;S. Hellman;D. Hellmich;C. Helsens;R. C. W. Henderson;M. Henke;A. Henrichs;A. M. Henriques Correia;S. Henrot-Versille;F. Henry-Couannier;C. Hensel;T. Henß;C. M. Hernandez;Y. Hernández Jiménez;R. Herrberg;A. D. Hershenhorn;G. Herten;R. Hertenberger;L. Hervas;N. P. Hessey;E. Higón-Rodriguez;D. Hill;J. C. Hill;N. Hill;K. H. Hiller;S. Hillert;S. J. Hillier;I. Hinchliffe;E. Hines;M. Hirose;F. Hirsch;D. Hirschbuehl;J. Hobbs;N. Hod;M. C. Hodgkinson;P. Hodgson;A. Hoecker;M. R. Hoeferkamp;J. Hoffman;D. Hoffmann;M. Hohlfeld;M. Holder;S. O. Holmgren;T. Holy;J. L. Holzbauer;Y. Homma;T. M. Hong;L. Hooft van Huysduynen;T. Horazdovsky;C. Horn;S. Horner;J-Y. Hostachy;S. Hou;M. A. Houlden;A. Hoummada;J. Howarth;D. F. Howell;I. Hristova;J. Hrivnac;I. Hruska;T. Hryn’ova;P. J. Hsu;S.-C. Hsu;G. S. Huang;Z. Hubacek;F. Hubaut;F. Huegging;T. B. Huffman;E. W. Hughes;G. Hughes;R. E. Hughes-Jones;M. Huhtinen;P. Hurst;M. Hurwitz;U. Husemann;N. Huseynov;J. Huston;J. Huth;G. Iacobucci;G. Iakovidis;M. Ibbotson;I. Ibragimov;R. Ichimiya;L. Iconomidou-Fayard;J. Idarraga;P. Iengo;O. Igonkina;Y. Ikegami;M. Ikeno;Y. Ilchenko;D. Iliadis;N. Ilic;D. Imbault;M. Imori;T. Ince;J. Inigo-Golfin;P. Ioannou;M. Iodice;A. Irles Quiles;C. Isaksson;A. Ishikawa;M. Ishino;R. Ishmukhametov;C. Issever;S. Istin;A. V. Ivashin;W. Iwanski;H. Iwasaki;J. M. Izen;V. Izzo;B. Jackson;J. N. Jackson;P. Jackson;M. R. Jaekel;V. Jain;K. Jakobs;S. Jakobsen;J. Jakubek;D. K. Jana;E. Jankowski;E. Jansen;H. Jansen;A. Jantsch;M. Janus;G. Jarlskog;L. Jeanty;K. Jelen;I. Jen-La Plante;P. Jenni;A. Jeremie;P. Jež;S. Jézéquel;M. K. Jha;H. Ji;W. Ji;J. Jia;Y. Jiang;M. Jimenez Belenguer;G. Jin;S. Jin;O. Jinnouchi;M. D. Joergensen;D. Joffe;L. G. Johansen;M. Johansen;K. E. Johansson;P. Johansson;S. Johnert;K. A. Johns;K. Jon-And;G. Jones;R. W. L. Jones;T. W. Jones;T. J. Jones;O. Jonsson;C. Joram;P. M. Jorge;J. Joseph;T. Jovin;X. Ju;C. A. Jung;V. Juranek;P. Jussel;A. Juste Rozas;V. V. Kabachenko;S. Kabana;M. Kaci;A. Kaczmarska;P. Kadlecik;M. Kado;H. Kagan;M. Kagan;S. Kaiser;E. Kajomovitz;S. Kalinin;L. V. Kalinovskaya;S. Kama;N. Kanaya;M. Kaneda;T. Kanno;V. A. Kantserov;J. Kanzaki;B. Kaplan;A. Kapliy;J. Kaplon;D. Kar;M. Karagounis;M. Karagoz;M. Karnevskiy;K. Karr;V. Kartvelishvili;A. N. Karyukhin;L. Kashif;G. Kasieczka;R. D. Kass;A. Kastanas;M. Kataoka;Y. Kataoka;E. Katsoufis;J. Katzy;V. Kaushik;K. Kawagoe;T. Kawamoto;G. Kawamura;M. S. Kayl;V. A. Kazanin;M. Y. Kazarinov;J. R. Keates;R. Keeler;R. Kehoe;M. Keil;G. D. Kekelidze;J. Kennedy;C. J. Kenney;M. Kenyon;O. Kepka;N. Kerschen;B. P. Kerševan;S. Kersten;K. Kessoku;J. Keung;F. Khalil-zada;H. Khandanyan;A. Khanov;D. Kharchenko;A. Khodinov;A. G. Kholodenko;A. Khomich;T. J. Khoo;G. Khoriauli;A. Khoroshilov;N. Khovanskiy;V. Khovanskiy;E. Khramov;J. Khubua;H. Kim;M. S. Kim;P. C. Kim;S. H. Kim;N. Kimura;O. Kind;B. T. King;M. King;R. S. B. King;J. Kirk;L. E. Kirsch;A. E. Kiryunin;T. Kishimoto;D. Kisielewska;T. Kittelmann;A. M. Kiver;E. Kladiva;J. Klaiber-Lodewigs;M. Klein;U. Klein;K. Kleinknecht;M. Klemetti;A. Klier;A. Klimentov;R. Klingenberg;E. B. Klinkby;T. Klioutchnikova;P. F. Klok;S. Klous;E.-E. Kluge;T. Kluge;P. Kluit;S. Kluth;N. S. Knecht;E. Kneringer;J. Knobloch;E. B. F. G. Knoops;A. Knue;B. R. Ko;T. Kobayashi;M. Kobel;M. Kocian;P. Kodys;K. Köneke;A. C. König;S. Koenig;L. Köpke;F. Koetsveld;P. Koevesarki;T. Koffas;E. Koffeman;F. Kohn;Z. Kohout;T. Kohriki;T. Koi;T. Kokott;G. M. Kolachev;H. Kolanoski;V. Kolesnikov;I. Koletsou;J. Koll;D. Kollar;M. Kollefrath;S. D. Kolya;A. A. Komar;Y. Komori;T. Kondo;T. Kono;A. I. Kononov;R. Konoplich;N. Konstantinidis;A. Kootz;S. Koperny;S. V. Kopikov;K. Korcyl;K. Kordas;V. Koreshev;A. Korn;A. Korol;I. Korolkov;E. V. Korolkova;V. A. Korotkov;O. Kortner;S. Kortner;V. V. Kostyukhin;M. J. Kotamäki;S. Kotov;V. M. Kotov;A. Kotwal;C. Kourkoumelis;V. Kouskoura;A. Koutsman;R. Kowalewski;T. Z. Kowalski;W. Kozanecki;A. S. Kozhin;V. Kral;V. A. Kramarenko;G. Kramberger;M. W. Krasny;A. Krasznahorkay;J. Kraus;J. K. Kraus;A. Kreisel;F. Krejci;J. Kretzschmar;N. Krieger;P. Krieger;K. Kroeninger;H. Kroha;J. Kroll;J. Kroseberg;J. Krstic;U. Kruchonak;H. Krüger;T. Kruker;N. Krumnack;Z. V. Krumshteyn;A. Kruth;T. Kubota;S. Kuehn;A. Kugel;T. Kuhl;D. Kuhn;V. Kukhtin;Y. Kulchitsky;S. Kuleshov;C. Kummer;M. Kuna;N. Kundu;J. Kunkle;A. Kupco;H. Kurashige;M. Kurata;Y. A. Kurochkin;V. Kus;M. Kuze;J. Kvita;R. Kwee;A. Rosa;L. Rotonda;L. Labarga;J. Labbe;S. Lablak;C. Lacasta;F. Lacava;H. Lacker;D. Lacour;V. R. Lacuesta;E. Ladygin;R. Lafaye;B. Laforge;T. Lagouri;S. Lai;E. Laisne;M. Lamanna;C. L. Lampen;W. Lampl;E. Lancon;U. Landgraf;M. P. J. Landon;H. Landsman;J. L. Lane;C. Lange;A. J. Lankford;F. Lanni;K. Lantzsch;S. Laplace;C. Lapoire;J. F. Laporte;T. Lari;A. V. Larionov;A. Larner;C. Lasseur;M. Lassnig;P. Laurelli;W. Lavrijsen;P. Laycock;A. B. Lazarev;O. Dortz;E. Guirriec;C. Maner;E. Menedeu;C. Lebel;T. LeCompte;F. Ledroit-Guillon;H. Lee;J. S. H. Lee;S. C. Lee;L. Lee;M. Lefebvre;M. Legendre;A. Leger;B. C. LeGeyt;F. Legger;C. Leggett;M. Lehmacher;G. Lehmann Miotto;X. Lei;M. A. L. Leite;R. Leitner;D. Lellouch;M. Leltchouk;B. Lemmer;V. Lendermann;K. J. C. Leney;T. Lenz;G. Lenzen;B. Lenzi;K. Leonhardt;S. Leontsinis;C. Leroy;J-R. Lessard;J. Lesser;C. G. Lester;A. Leung Fook Cheong;J. Levêque;D. Levin;L. J. Levinson;M. S. Levitski;A. Lewis;G. H. Lewis;A. M. Leyko;M. Leyton;B. Li;H. Li;S. Li;X. Li;Z. Liang;H. Liao;B. Liberti;P. Lichard;M. Lichtnecker;K. Lie;W. Liebig;R. Lifshitz;C. Limbach;A. Limosani;M. Limper;S. C. Lin;F. Linde;J. T. Linnemann;E. Lipeles;L. Lipinsky;A. Lipniacka;T. M. Liss;D. Lissauer;A. Lister;A. M. Litke;C. Liu;D. Liu;H. Liu;J. B. Liu;M. Liu;S. Liu;Y. Liu;M. Livan;S. S. A. Livermore;A. Lleres;J. Llorente Merino;S. L. Lloyd;E. Lobodzinska;P. Loch;W. S. Lockman;T. Loddenkoetter;F. K. Loebinger;A. Loginov;C. W. Loh;T. Lohse;K. Lohwasser;M. Lokajicek;J. Loken;V. P. Lombardo;R. E. Long;L. Lopes;D. Lopez Mateos;J. Lorenz;M. Losada;P. Loscutoff;F. Lo Sterzo;M. J. Losty;X. Lou;A. Lounis;K. F. Loureiro;J. Love;P. A. Love;A. J. Lowe;F. Lu;H. J. Lubatti;C. Luci;A. Lucotte;A. Ludwig;D. Ludwig;I. Ludwig;J. Ludwig;F. Luehring;G. Luijckx;D. Lumb;L. Luminari;E. Lund;B. Lund-Jensen;B. Lundberg;J. Lundberg;J. Lundquist;M. Lungwitz;G. Lutz;D. Lynn;J. Lys;E. Lytken;H. Ma;L. L. Ma;J. A. Macana Goia;G. Maccarrone;A. Macchiolo;B. Maček;J. Machado Miguens;R. Mackeprang;R. J. Madaras;W. F. Mader;R. Maenner;T. Maeno;P. Mättig;S. Mättig;L. Magnoni;E. Magradze;Y. Mahalalel;K. Mahboubi;G. Mahout;C. Maiani;C. Maidantchik;A. Maio;S. Majewski;Y. Makida;N. Makovec;P. Mal;Pa. Malecki;P. Malecki;V. P. Maleev;F. Malek;U. Mallik;D. Malon;C. Malone;S. Maltezos;V. Malyshev;S. Malyukov;R. Mameghani;J. Mamuzic;A. Manabe;L. Mandelli;I. Mandić;R. Mandrysch;J. Maneira;P. S. Mangeard;I. D. Manjavidze;A. Mann;P. M. Manning;A. Manousakis-Katsikakis;B. Mansoulie;A. Manz;A. Mapelli;L. Mapelli;L. March;J. F. Marchand;F. Marchese;G. Marchiori;M. Marcisovsky;A. Marin;C. P. Marino;F. Marroquim;R. Marshall;Z. Marshall;F. K. Martens;S. Marti-Garcia;A. J. Martin;B. Martin;B. Martin;F. F. Martin;J. P. Martin;Ph. Martin;T. A. Martin;V. J. Martin;B. Ma

    Measurement of τ

    No full text
    corecore