1,329 research outputs found
Spectrum and Wave Functions of Excited States in Lattice Gauge Theory
We suggest a new method to compute the spectrum and wave functions of excited
states. We construct a stochastic basis of Bargmann link states, drawn from a
physical probability density distribution and compute transition amplitudes
between stochastic basis states. From such transition matrix we extract wave
functions and the energy spectrum. We apply this method to lattice
gauge theory. As a test we compute the energy spectrum, wave functions and
thermodynamical functions of the electric Hamiltonian and compare it with
analytical results. We find excellent agreement. We observe scaling of energies
and wave functions in the variable of time. We also present first results on a
small lattice for the full Hamiltonian including the magnetic term.Comment: Lattice 2008 conferenc
Enhancing medical students\u27 communication skills: development and evaluation of an undergraduate training program
BACKGROUND: There is a relative lack of current research on the effects of specific communication training offered at the beginning of the medical degree program. The newly developed communication training Basics and Practice in Communication Skills was pilot tested in 2008 and expanded in the following year at the University Medical Centre Hamburg-Eppendorf in Germany. The goal was to promote and improve the communicative skills of participants and show the usefulness of an early offered intervention on patient-physician communication within the medical curriculum.
METHODS: The students participating in the project and a comparison group of students from the standard degree program were surveyed at the beginning and end of the courses. The survey consisted of a self-assessment of their skills as well as a standardised expert rating and an evaluation of the modules by means of a questionnaire.
RESULTS: Students who attended the communication skills course exhibited a considerable increase of communication skills in this newly developed training. It was also observed that students in the intervention group had a greater degree of self-assessed competence following training than the medical students in the comparison group. This finding is also reflected in the results from a standardised objective measure.
CONCLUSIONS: The empirical results of the study showed that the training enabled students to acquire specialised competence in communication through the course of a newly developed training program. These findings will be used to establish new communication training at the University Medical Centre Hamburg-Eppendorf
The Fractal Geometry of Critical Systems
We investigate the geometry of a critical system undergoing a second order
thermal phase transition. Using a local description for the dynamics
characterizing the system at the critical point T=Tc, we reveal the formation
of clusters with fractal geometry, where the term cluster is used to describe
regions with a nonvanishing value of the order parameter. We show that,
treating the cluster as an open subsystem of the entire system, new
instanton-like configurations dominate the statistical mechanics of the
cluster. We study the dependence of the resulting fractal dimension on the
embedding dimension and the scaling properties (isothermal critical exponent)
of the system. Taking into account the finite size effects we are able to
calculate the size of the critical cluster in terms of the total size of the
system, the critical temperature and the effective coupling of the long
wavelength interaction at the critical point. We also show that the size of the
cluster has to be identified with the correlation length at criticality.
Finally, within the framework of the mean field approximation, we extend our
local considerations to obtain a global description of the system.Comment: 1 LaTeX file, 4 figures in ps-files. Accepted for publication in
Physical Review
A dedicated haem lyase is required for the maturation of a novel bacterial cytochrome c with unconventional covalent haem binding
In bacterial c-type cytochromes, the haem cofactor is covalently attached via two cysteine residues organized in a haem c-binding motif. Here, a novel octa-haem c protein, MccA, is described that contains only seven conventional haem c-binding motifs (CXXCH), in addition to several single cysteine residues and a conserved CH signature. Mass spectrometric analysis of purified MccA from Wolinella succinogenes suggests that two of the single cysteine residues are actually part of an unprecedented CX15CH sequence involved in haem c binding. Spectroscopic characterization of MccA identified an unusual high-potential haem c with a red-shifted absorption maximum, not unlike that of certain eukaryotic cytochromes c that exceptionally bind haem via only one thioether bridge. A haem lyase gene was found to be specifically required for the maturation of MccA in W. succinogenes. Equivalent haem lyase-encoding genes belonging to either the bacterial cytochrome c biogenesis system I or II are present in the vicinity of every known mccA gene suggesting a dedicated cytochrome c maturation pathway. The results necessitate reconsideration of computer-based prediction of putative haem c-binding motifs in bacterial proteomes
Modelling predictors of molecular response to frontline imatinib for patients with chronic myeloid leukaemia
BACKGROUND: Treatment of patients with chronic myeloid leukaemia (CML) has become increasingly difficult in recent years due to the variety of treatment options available and challenge deciding on the most appropriate treatment strategy for an individual patient. To facilitate the treatment strategy decision, disease assessment should involve molecular response to initial treatment for an individual patient. Patients predicted not to achieve major molecular response (MMR) at 24 months to frontline imatinib may be better treated with alternative frontline therapies, such as nilotinib or dasatinib. The aims of this study were to i) understand the clinical prediction 'rules' for predicting MMR at 24 months for CML patients treated with imatinib using clinical, molecular, and cell count observations (predictive factors collected at diagnosis and categorised based on available knowledge) and ii) develop a predictive model for CML treatment management. This predictive model was developed, based on CML patients undergoing imatinib therapy enrolled in the TIDEL II clinical trial with an experimentally identified achieving MMR group and non-achieving MMR group, by addressing the challenge as a machine learning problem. The recommended model was validated externally using an independent data set from King Faisal Specialist Hospital and Research Centre, Saudi Arabia. PRINCIPLE FINDINGS: The common prognostic scores yielded similar sensitivity performance in testing and validation datasets and are therefore good predictors of the positive group. The G-mean and F-score values in our models outperformed the common prognostic scores in testing and validation datasets and are therefore good predictors for both the positive and negative groups. Furthermore, a high PPV above 65% indicated that our models are appropriate for making decisions at diagnosis and pre-therapy. Study limitations include that prior knowledge may change based on varying expert opinions; hence, representing the category boundaries of each predictive factor could dramatically change performance of the models.Haneen Banjar, Damith Ranasinghe, Fred Brown, David Adelson, Trent Kroger, Tamara Leclercq, Deborah White, Timothy Hughes, Naeem Chaudhr
Hematopoietic stem cell transplantation in Europe 2014: More than 40 000 transplants annually
A record number of 40 829 hematopoietic stem cell transplantation (HSCT) in 36 469 patients (15 765 allogeneic (43%), 20 704 autologous (57%)) were reported by 656 centers in 47 countries to the 2014 survey. Trends include: continued growth in transplant activity, more so in Eastern European countries than in the west; a continued increase in the use of haploidentical family donors (by 25%) and slower growth for unrelated donor HSCT. The use of cord blood as a stem cell source has decreased again in 2014. Main indications for HSCT were leukemias: 11 853 (33%; 96% allogeneic); lymphoid neoplasias; 20 802 (57%; 11% allogeneic); solid tumors; 1458 (4%; 3% allogeneic) and non-malignant disorders; 2203 (6%; 88% allogeneic). Changes in transplant activity include more allogeneic HSCT for AML in CR1, myeloproliferative neoplasm (MPN) and aplastic anemia and decreasing use in CLL; and more autologous HSCT for plasma cell disorders and in particular for amyloidosis. In addition, data on numbers of teams doing alternative donor transplants, allogeneic after autologous HSCT, autologous cord blood transplants are presented
Data-driven grading of acute graft-versus-host disease
: Despite advances in allogeneic hematopoietic cell transplantation, acute graft-versus-host disease (aGVHD) remains its leading complication, yet with heterogeneous outcomes. Here, we analyzed aGVHD phenotypes and clinical classifications in depth in large, multicenter cohorts involving 3019 patients and addressed prevailing gaps by developing data-driven models. We compared, tested and verified these along with all conventional classifications in independent cohorts and found that data-driven grading outperformed conventional grading in Akaike information criterion and concordance index metrics. Data-driven classifications refined aGVHD assessment with up to 12 severity grades, which were associated with distinct nonrelapse mortality (NRM) and confirmed the key role of intestinal aGVHD. We developed an online calculator for physicians to implement principal component-derived grading (PC1). These results provide substantial insight into the evaluation of aGVHD phenotypes and multiorgan involvement, which relegates the exclusive reporting of overall aGVHD severity grades in transplant registries and clinical trials. Data-driven aGVHD grading provides an expandable platform to refine classification and transplant risk assessment
Spontaneous symmetry breaking of (1+1)-dimensional theory in light-front field theory (II)
We discuss spontaneous symmetry breaking of (1+1)-dimensional theory
in light-front field theory using a Tamm-Dancoff truncation. We show that, even
though light-front field theory has a simple vacuum state which is an
eigenstate of the full Hamiltonian, the field can develop a nonzero vacuum
expectation value. This occurs because the zero mode of the field must satisfy
an operator valued constraint equation. In the context of (1+1)-dimensional
theory we present solutions to the constraint equation using a
Tamm-Dancoff truncation to a finite number of particles and modes. We study the
behavior of the zero mode as a function of coupling and Fock space truncation.
The zero mode introduces new interactions into the Hamiltonian which breaks the
symmetry of the theory when the coupling is stronger than the critical
coupling.Comment: 25 page
- âŠ