32 research outputs found

    Does toxicity of aromatic pollutants increase under remote atmospheric conditions

    Get PDF
    Aromatic compounds contribute significantly to the budget of atmospheric pollutants and represent considerable hazard to living organisms. However, they are only rarely included into atmospheric models which deviate substantially from field measurements. A powerful experimental-simulation tool for the assessment of the impact of low- and semi-volatile aromatic pollutants on the environment due to their atmospheric aqueous phase aging has been developed and introduced for the first time. The case study herein reveals that remote biotopes might be the most damaged by wet urban guaiacol-containing biomass burning aerosols. It is shown that only after the primary pollutant guaiacol has been consumed, its probably most toxic nitroaromatic product is largely formed. Revising the recent understanding of atmospheric aqueous phase chemistry, which is mostly concerned with the radical nitration mechanisms, the observed phenomenon is mainly attributed to the electrophilic nitrogen-containing reactive species. Here, their intriguing role is closely inspected and discussed from the ecological perspective

    Underappreciated and Complex Role of Nitrous Acid in Aromatic Nitration under Mild Environmental Conditions: The Case of Activated Methoxyphenols

    No full text
    Many ambiguities surround the possible mechanisms of colored and toxic nitrophenols formation in natural systems. Nitration of a biologically and environmentally relevant aromatic compound, guaiacol (2-methoxyphenol), under mild aqueous-phase conditions (ambient temperatures, pH 4.5) was investigated by a temperature-dependent experimental modeling coupled to extensive ab initio calculations to obtain the activation energies of the modeled reaction pathways. The importance of dark nonradical reactions is emphasized, involving nitrous (HNO2) and peroxynitrous (HOONO) acids. Oxidation by HOONO is shown to proceed via a nonradical pathway, possibly involving the nitronium ion (NO2+) formation. Using quantum chemical calculations at the MP2/6-31++g(d,p) level, NO2 is shown capable of abstracting a hydrogen atom from the phenolic group on the aromatic ring. In a protic solvent, the corresponding aryl radical can combine with HNO2 to yield OH and, after a subsequent oxidation step, nitrated aromatic products. The demonstrated chemistry is especially important for understanding the aging of nighttime atmospheric deliquesced aerosol. The relevance should be further investigated in the atmospheric gaseous phase. The results of this study have direct implications for accurate modeling of the burden of toxic nitroaromatic pollutants, and the formation of atmospheric brown carbon and its associated influence on Earth\u27s albedo and climate forcing

    Seasonality of Polyaromatic Hydrocarbons (PAHs) and Their Derivatives in PM<sub>2.5</sub> from Ljubljana, Combustion Aerosol Source Apportionment, and Cytotoxicity of Selected Nitrated Polyaromatic Hydrocarbons (NPAHs)

    Get PDF
    Airborne particulate matter (PM) is a vector of many toxic pollutants, including polyaromatic hydrocarbons (PAHs) and their derivatives. Especially harmful is the fine fraction (PM2.5), which penetrates deep into the lungs during inhalation and causes various diseases. Amongst PM2.5 components with toxic potential are nitrated PAHs (NPAHs), knowledge of which is still rudimentary. Three of the measured NPAHs (1-nitropyrene (1-nP), 9-nitroanthracene (9-nA), and 6-nitrochrysene (6-nC)) were detected in ambient PM2.5 from Ljubljana, Slovenia, along with thirteen non-nitrated PAHs. The highest concentrations of pollutants, which are closely linked with incomplete combustion, were observed in the cold part of the year, whereas the concentrations of NPAHs were roughly an order of magnitude lower than those of PAHs throughout the year. Further on, we have evaluated the toxicity of four NPAHs, including 6-nitrobenzo[a]pyrene (6-nBaP), to the human kidney cell line, HEK293T. The most potent was 1-nP (IC50 = 28.7 µM), followed by the other three NPAHs, whose IC50 was above 400 or 800 µM. According to our cytotoxicity assessment, atmospheric 1-nP is the most harmful NPAH among the investigated ones. Despite low airborne concentrations of NPAHs in ambient air, they are generally considered harmful to human health. Therefore, systematic toxicological assessment of NPAHs at different trophic levels, starting with cytotoxicity testing, is necessary in order to accurately evaluate their threat and adopt appropriate abatement strategies
    corecore