135 research outputs found

    Enhanced Humoral Immune Response After COVID-19 Vaccination in Elderly Kidney Transplant Recipients on Everolimus Versus Mycophenolate Mofetil-containing Immunosuppressive Regimens

    Get PDF
    BACKGROUND: Elderly kidney transplant recipients (KTRs) represent almost one third of the total kidney transplant population. These patients have a very high coronavirus disease 2019 (COVID-19)-related mortality, whereas their response to COVID-19 vaccination is impaired. Finding ways to improve the COVID-19 vaccination response in this vulnerable population is of uttermost importance. METHODS: In the OPTIMIZE trial, we randomly assign elderly KTRs to an immunosuppressive regimen with standard-exposure calcineurin inhibitor (CNI), mycophenolate mofetil, and prednisolone or an adapted regimen with low dose CNI, everolimus, and prednisolone. In this substudy, we measured the humoral response after 2 (N = 32) and 3 (N = 22) COVID-19 mRNA vaccinations and the cellular response (N = 15) after 2 vaccinations. RESULTS: . The seroconversion rates of elderly KTRs on a standard immunosuppressive regimen were only 13% and 38% after 2 and 3 vaccinations, respectively, whereas the response rates of KTRs on the everolimus regimen were significantly higher at 56% (P = 0.009) and 100% (P = 0.006). Levels of severe acute respiratory syndrome coronaVirus 2 IgG antibodies were significantly higher at both time points in the everolimus group (P = 0.004 and P < 0.001). There were no differences in cellular response after vaccination. CONCLUSION: . An immunosuppressive regimen without mycophenolate mofetil, a lower CNI dose, and usage of everolimus is associated with a higher humoral response rate after COVID-19 vaccination in elderly KTRs after transplantation. This encouraging finding should be investigated in larger cohorts, including transplant recipients of all ages

    Analysis of serum immune markers in seropositive and seronegative rheumatoid arthritis and in high-risk seropositive arthralgia patients

    Get PDF
    Presence of autoantibodies precedes development of seropositive rheumatoid arthritis (SP RA) and seropositive arthralgia patients (SAP) are at risk of developing RA. The aims of the study are to identify additional serum immune markers discriminating between SP and seronegative (SN) RA, and markers identifying high-risk SAP. Sera from SAP (n = 27), SP RA (n = 22), SN RA (n = 11) and healthy controls (n = 20) were analyzed using the Human Cytokine 25-Plex Panel. Selected markers were validated in independent cohorts of SP RA (n = 35) and SN RA (n = 12) patients. Eleven of 27 SAP developed RA within 8 months (median follow-up time, range 1-32 months), and their baseline serum markers were compared to 16 non-progressing SAP. SAP and SP RA patients showed a marked overlap in their systemic immune profiles, while SN RA showed a distinct immune profile. Three of 4 markers discriminating between SP and SN RA (IL-1 beta, IL-15 and Eotaxin, but not CCL5) were similarly modulated in independent cohorts. SAP progressing to RA showed trends for increases in IL-5, MIP-1 beta, IL-1RA and IL-12 compared to non-progressing SAP. ROC analysis showed that serum IL-5 most accurately discriminated between the two SAP groups (AUC > 0.8), suggesting that baseline IL-5 levels may aid the identification of high-risk SAP

    Involvement of MicroRNAs in the Aging-Related Decline of CD28 Expression by Human T Cells

    Get PDF
    Loss of CD28 is a characteristic feature of T cell aging, but the underlying mechanisms of this loss are elusive. As differential expression of microRNAs (miRNAs) has been described between CD28+ and CD28- T cells, we hypothesized that altered miRNA expression contributes to the age-associated downregulation of CD28. To avoid the confounding effects of age-associated changes in the proportions of T cells at various differentiation stages in vivo, an experimental model system was used to study changes over time in the expression of miRNA associated with the loss of CD28 expression in monoclonal T cell populations at a lower or higher number of population doublings (PDs). This approach allows identification of age-associated miRNA expression changes in a longitudinal model. Results were validated in ex vivo samples. The cumulative number of PDs but not the age of the donor of the T cell clone was correlated with decreased expression of CD28. Principal component analysis of 252 expressed miRNAs showed clustering based on low and high PDs, irrespective of the age of the clone donor. Increased expression of miR-9-5p and miR-34a-5p was seen in clones at higher PDs, and miR-9-5p expression inversely correlated with CD28 expression in ex vivo sorted T-cells from healthy subjects. We then examined the involvement of miR-9-5p, miR-34a-5p, and the members of the miR-23a similar to 24-2 cluster, in which all are predicted to bind to the 3'UTR of CD28, in the IL-15-induced loss of CD28 in T cells. Culture of fresh naive CD28+ T cells in the presence of IL-15 resulted in a gradual loss of CD28 expression, while the expression of miR-9-5p, miR-34a-5p, and members of the miR-23a-24-2 cluster increased. Binding of miR-9-5p, miR-34a-5p, miR-24-3p, and miR-27- 3p to the 3'UTR of CD28 was studied using luciferase reporter constructs. Functional binding to the 3'UTR was shown for miR-24-3p and miR-27a-3p. Our results indicate involvement of defined miRNAs in T cells in relation to specific characteristics of T cell aging, i.e., PD and CD28 expression

    Increased miR-142-3p Expression Might Explain Reduced Regulatory T Cell Function in Granulomatosis With Polyangiitis

    Get PDF
    Objectives: Regulatory T cells (Tregs) are frequently functionally impaired in patients with granulomatosis with polyangiitis (GPA). However, the mechanism underlying their impaired function is unknown. Here, we hypothesized that Treg dysfunction in GPA is due to altered microRNA (miRNA) expression. Methods: RNA isolated from FACS-sorted memory ((M)) Tregs (CD4(+)CD45RO(+)CD25(+)CD127(-)) of 8 healthy controls (HCs) and 8 GPA patients without treatment was subjected to miRNA microarray analysis. Five differentially expressed miRNAs were validated in a larger cohort by reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). An miRNA target gene database search revealed targets that were tested with RT-qPCR in (M)Tregs from patients and HCs. cAMP levels were measured using flow cytometry. Results: Microarray analysis revealed 19 differentially expressed miRNAs, of which miR-142-3p was confirmed to be significantly upregulated in (M)Tregs from GPA patients compared to those from HCs (1.9-fold, p = 0.03). In vitro overexpression of miR-142-3p lowered the suppressive capacity of (M)Tregs (2.1-fold, p = 0.03), and miR-142-3p expression correlated negatively with the suppressive capacity (rho = -0.446, p = 0.04). Overexpression of miR-142-3p significantly decreased cAMP levels (p = 0.02) and tended to decrease the mRNA levels of a predicted target gene, adenylate cyclase 9 (ADCY9; p = 0.06). In comparison to those from HCs, (M)Tregs from GPA patients had lower ADCY9 mRNA levels (2-fold, p = 0.008) and produced significantly less cAMP after stimulation. Importantly, induction of cAMP production in miR-142-3p overexpressed (M)Tregs by forskolin restored their suppressive function in vitro. Conclusion: Overexpression of miR-142-3p in (M)Tregs from GPA patients might cause functional impairment by targeting ADCY9, which leads to the suppression of cAMP production

    Neurofilament light chain, a biomarker for polyneuropathy in systemic amyloidosis

    Get PDF
    OBJECTIVE: To study serum neurofilament light chain (sNfL) in amyloid light chain (AL) amyloidosis patients with and without polyneuropathy (PNP) and to corroborate previous observations that sNfL is increased in hereditary transthyretin-related (ATTRv) amyloidosis patients with PNP. METHODS: sNfL levels were assessed retrospectively in patients with AL amyloidosis with and without PNP (AL/PNP+ and AL/PNP-, respectively), patients with ATTRv amyloidosis and PNP (ATTRv/PNP+), asymptomatic transthyretin (TTR) gene mutation carriers (TTRv carriers) and healthy controls. Healthy controls (HC) were age- and sex-matched to both AL/PNP- (HC/AL) and TTRv carriers (HC/TTRv). The single-molecule array (Simoa) assay was used to assess sNfL levels. RESULTS: sNfL levels were increased both in 10 AL/PNP+ patients (p  I) had the highest sNfL levels compared to patients with early PNP (PND-score I) (p = .05). sNfL levels did not differ between TTRv carriers and HC/TTRv individuals. In the group comprising all healthy controls and in the group of TTRv carriers, sNfL levels correlated with age. CONCLUSION: sNfL levels are increased in patients with PNP in both AL and ATTRv amyloidosis and are related to severity of PNP in ATTRv amyloidosis. sNfL is a promising biomarker to detect PNP, not only in ATTRv but also in AL amyloidosis

    Age-Associated Differences in MiRNA Signatures Are Restricted to CD45RO Negative T Cells and Are Associated with Changes in the Cellular Composition, Activation and Cellular Ageing

    Get PDF
    MicroRNAs (miRNAs) have emerged as important players in the regulation of T-cell functionality. However, comprehensive insight into the extent of age-related miRNA changes in T cells is lacking. We established miRNA expression patterns of CD45RO- naïve and CD45RO+ memory T-cell subsets isolated from peripheral blood cells from young and elderly individuals. Unsupervised clustering of the miRNA expression data revealed an age-related clustering in the CD45RO- T cells, while CD45RO+ T cells clustered based on expression of CD4 and CD8. Seventeen miRNAs showed an at least 2-fold up- or downregulation in CD45RO- T cells obtained from young as compared to old donors. Validation on the same and independent samples revealed a statistically significant age-related upregulation of miR-21, miR-223 and miR-15a. In a T-cell subset analysis focusing on known age-related phenotypic changes, we showed significantly higher miR-21 and miR-223 levels in CD8+CD45RO-CCR7- TEMRA compared to CD45RO-CCR7+ TNAIVE-cells. Moreover, miR-21 but not miR-223 levels were significantly increased in CD45RO-CD31- post-thymic TNAIVE cells as compared to thymic CD45RO-CD31+ TNAIVE cells. Upon activation of CD45RO- TNAIVE cells we observed a significant induction of miR-21 especially in CD4+ T cells, while miR-223 levels significantly decreased only in CD4+ T cells. Besides composition and activation-induced changes, we showed a borderline significant increase in miR-21 levels upon an increasing number of population doublings in CD4+ T-cell clones. Together, our results show that ageing related changes in miRNA expression are dominant in the CD45RO- T-cell compartment. The differential expression patterns can be explained by age related changes in T-cell composition, i.e. accumulation of CD8+ TEMRA and CD4+ post-thymic expanded CD31- T cells and by cellular ageing, as demonstrated in a longitudinal clonal culture model

    Inhibition of the miR-155 target NIAM phenocopies the growth promoting effect of miR-155 in B-cell lymphoma

    Get PDF
    Several studies have indicated an important role for miR-155 in the pathogenesis of B-cell lymphoma. Highly elevated levels of miR-155 were indeed observed in most B-cell lymphomas with the exception of Burkitt lymphoma (BL). However, the molecular mechanisms that underlie the oncogenic role of miR-155 in B-cell lymphoma are not well understood. To identify the miR-155 targets relevant for B-cell lymphoma, we performed RNA immunoprecipitation of Argonaute 2 in Hodgkin lymphoma (HL) cells upon miR-155 inhibition and in BL cells upon ectopic expression of miR-155. We identified 54 miR-155-specific target genes in BL cells and confirmed miR-155 targeting of DET1, NIAM, TRIM32, HOMEZ, PSIP1 and JARID2. Five of these targets are also regulated by endogenous miR-155 in HL cells. Both overexpression of miR-155 and inhibition of expression of the novel miR-155 target gene NIAM increased proliferation of BL cells. In primary B-cell lymphoma NIAM-positive cases have significant lower levels of miR-155 as compared to NIAM-negative cases, suggesting that NIAM is also regulated by miR-155 in primary B-cell lymphoma. Thus, our data indicate an oncogenic role for miR-155 in B-cell lymphoma which involves targeting the tumor suppressor NIAM

    Argonaute 2 immunoprecipitation revealed large tumor suppressor kinase 1 as a novel proapoptotic target of miR-21 in T cells

    Get PDF
    MicroRNA (miR)-21 is an important suppressor of T-cell apoptosis that is also overexpressed in many types of cancers. The exact mechanisms underlying the antiapoptotic effects of miR-21 are not well understood. In this study, we used the Jurkat T-cell line as a model to identify apoptosis-associated miR-21 target genes. We showed that expression of miR-21 rapidly increases upon alpha CD3/alpha CD28 activation of Jurkat cells. Inhibition of miR-21 reduced cell growth which could be explained by an increase in apoptosis. MicroRNA target gene identification by AGO2 RNA-immunoprecipitation followed by gene expression microarray (RIP-Chip) resulted in the identification of 72 predicted miR-21 target genes that were at least twofold enriched in the AGO2-IP fraction of miR-21 overexpressing cells. Of these, 71 were at least twofold more enriched in the AGO2-IP fraction of miR-21 overexpressing cells as compared to AGO2-IP fraction of control cells. The target gene for which the AGO2-IP enrichment was most prominently increased upon miR-21 overexpression was the proapoptotic protein LATS1. Luciferase reporter assays and western blot analysis confirmed targeting of LATS1 by miR-21. qRT-PCR analysis in primary T cells showed an inverse expression pattern between LATS1 transcript levels and miR-21 upon T-cell stimulation. Finally, LATS1 knockdown partially rescued the miR-21 inhibition-induced impaired cell growth. Collectively, these data identify LATS1 as a miR-21 target important for the antiapoptotic function of miR-21 in T cells and likely also in many types of cancer

    A high throughput experimental approach to identify miRNA targets in human cells

    Get PDF
    The study of human microRNAs is seriously hampered by the lack of proper tools allowing genome-wide identification of miRNA targets. We performed Ribonucleoprotein ImmunoPrecipitation—gene Chip (RIP-Chip) using antibodies against wild-type human Ago2 in untreated Hodgkin lymphoma (HL) cell lines. Ten to thirty percent of the gene transcripts from the genome were enriched in the Ago2-IP fraction of untreated cells, representing the HL miRNA-targetome. In silico analysis indicated that ∼40% of these gene transcripts represent targets of the abundantly co-expressed miRNAs. To identify targets of miR-17/20/93/106, RIP-Chip with anti-miR-17/20/93/106 treated cells was performed and 1189 gene transcripts were identified. These genes were analyzed for miR-17/20/93/106 target sites in the 5′-UTRs, coding regions and 3′-UTRs. Fifty-one percent of them had miR-17/20/93/106 target sites in the 3′-UTR while 19% of them were predicted miR-17/20/93/106 targets by TargetScan. Luciferase reporter assay confirmed targeting of miR-17/20/93/106 to the 3′-UTRs of 8 out of 10 genes. In conclusion, we report a method which can establish the miRNA-targetome in untreated human cells and identify miRNA specific targets in a high throughput manner. This approach is applicable to identify miRNA targets in any human tissue sample or purified cell population in an unbiased and physiologically relevant manner
    corecore