19 research outputs found
A comparative study of magnetic resonance imaging, electrical impedance tomography and ultrasonic doppler velocimetry for semi-dilute fibre flow suspension characterisation
Experimental comparisons between imaging techniques serve to provide confidence in the validity of each technique for the study of multiphase flow systems. Such cross-validation can establish the limitations of each technique quantitatively. In the present paper, the authors report efforts made on the characterization of semi-dilute, mono-dispersed suspensions of rayon fibres in turbulent water flow using Magnetic Resonance Imaging (MRI), Ultrasound Velocity Profiling (UVP) and Electrical Impedance Tomography (EIT). Increasing flow velocities and fibre concentration were studied using these three experimental techniques. For lower fibre concentrations more uniform distributions were observed and as flow velocity increased fibre agglomerations were found in the centre region of the pipe
A GMMA-CPS-Based Vaccine for Non-Typhoidal <i>Salmonella</i>
Non-typhoidal Salmonella are a major cause of gastroenteritis worldwide, as well as causing bloodstream infections in sub-Saharan Africa with a high fatality rate. No vaccine is currently available for human use. Current vaccine development strategies are focused on capsular polysaccharides (CPS) present on the surface of non-typhoidal Salmonella. This study aimed to boost the amount of CPS purified from S. Typhimurium for immunization trials. Random mutagenesis with Tn10 transposon increased the production of CPS colanic acid, by 10-fold compared to wildtype. Immunization with colanic acid or colanic acid conjugated to truncated glycoprotein D or inactivated diphtheria toxin did not induce a protective immune response in mice. However, immunization with Generalized Modules for Membrane Antigens (GMMAs) isolated from colanic acid overproducing isolates reduced Salmonella colonization in mice. Our results support the development of a GMMA-CPS-based vaccine against non-typhoidal Salmonella
In vivo synthesis of bacterial amyloid curli contributes to joint inflammation during S. Typhimurium infection.
Reactive arthritis, an autoimmune disorder, occurs following gastrointestinal infection with invasive enteric pathogens, such as Salmonella enterica. Curli, an extracellular, bacterial amyloid with cross beta-sheet structure can trigger inflammatory responses by stimulating pattern recognition receptors. Here we show that S. Typhimurium produces curli amyloids in the cecum and colon of mice after natural oral infection, in both acute and chronic infection models. Production of curli was associated with an increase in anti-dsDNA autoantibodies and joint inflammation in infected mice. The negative impacts on the host appeared to be dependent on invasive systemic exposure of curli to immune cells. We hypothesize that in vivo synthesis of curli contributes to known complications of enteric infections and suggest that cross-seeding interactions can occur between pathogen-produced amyloids and amyloidogenic proteins of the host