57 research outputs found

    Potential of the Red Macroalga Bonnemaisonia hamifera in Reducing Methane Emissions from Ruminants

    Get PDF
    Researchers have been exploring seaweeds to reduce methane (CH4) emissions from livestock. This study aimed to investigate the potential of a red macroalga, B. hamifera, as an alternative to mitigate CH4 emissions. B. hamifera, harvested from the west coast of Sweden, was used in an in vitro experiment using a fully automated gas production system. The experiment was a randomized complete block design consisting of a 48 h incubation that included a control (grass silage) and B. hamifera inclusions at 2.5%, 5.0%, and 7.5% of grass silage OM mixed with buffered rumen fluid. Predicted in vivo CH4 production and total gas production were estimated by applying a set of models to the gas production data and in vitro fermentation characteristics were evaluated. The results demonstrated that the inclusion of B. hamifera reduced (p = 0.01) predicted in vivo CH4 and total gas productions, and total gas production linearly decreased (p = 0.03) with inclusion of B. hamifera. The molar proportion of propionate increased (p = 0.03) while isovalerate decreased (p = 0.04) with inclusion of B. hamifera. Chemical analyses revealed that B. hamifera had moderate concentrations of polyphenols. The iodine content was low, and there was no detectable bromoform, suggesting quality advantages over Asparagopsis taxiformis. Additionally, B. hamifera exhibited antioxidant activity similar to Resveratrol. The findings of this study indicated that B. hamifera harvested from temperate waters of Sweden possesses capacity to mitigate CH4 in vitro

    Effect of grain- or by-product-based concentrate fed with early- or late-harvested first-cut grass silage on dairy cow performance

    Get PDF
    This study compared the effects of a grain-based conventional concentrate (GC) and a concentrate based on agro-industrial by-products (BC), fed with grass silage harvested at early (ES) or late (LS) maturity stage, on dairy performance, CH4 and CO2 emissions, and metabolic status of dairy cows. Twenty lactating Nordic Red cows averaging 81 d in milk and 31.9 kg of milk/d pre-trial were assigned to a replicated 4 × 4 Latin square design. Dietary treatments were in a 2 × 2 factorial arrangement. The silages were harvested 2 wk apart from the same primary growth grass ley. The GC was made from oats, barley and wheat, and soybean meal, whereas the BC contained sugar beet pulp, wheat bran, canola meal, distillers dried grains, palm kernel expeller, and molasses. The diets were fed ad libitum as total mixed rations and were formulated from 661 g/kg of silage, 326 g/kg of concentrate, and 13 g/kg of minerals on a dry matter basis. The BC supplied the cows with less energy. Despite this, milk yield and composition were unaffected by concentrate type, except that milk protein was 0.7 g/kg lower in cows fed BC than in those fed GC. These results were accompanied by a 44 g/kg decrease in total-tract digestibility of crude protein and a 54 g/kg increase in neutral detergent fiber digestibility for cows fed BC. Cows fed ES on average consumed 2 kg/d more dry matter and yielded 3.5 kg/d more milk, 149 g/d more protein, and 141 g/d more fat than cows fed LS. There were few interaction effects between concentrate and silage sources on daily intake and dairy performance. However, edible feed conversion ratio (human-edible output in animal/potentially human-edible feed) showed greater improvements with ES than LS when replacing GC with BC. Feeding diets with late-cut silage generally reduced digestibility and energy utilization efficiency, but improved N utilization efficiency. Feeding LS also led to greater CH4 yield and CH4/CO2 ratio, and higher plasma concentration of nonesterified fatty acids. Plasma parameters reflecting energy metabolism and inflammation were all within the normal ranges, indicating that the cows were in good health during the experiment. In conclusion, a conventional concentrate can be replaced by agro-industrial by-products without compromising production in early lactation dairy cows. However, silage maturity has a stronger effect on the production traits of dairy cows than type of concentrate

    Effect of organic grass-clover silage on fiber digestion in dairy cows

    Get PDF
    There are differences in grass-clover proportions and chemical composition between herbage from primary growth (PG) and regrowth (RG) in grass-clover leys. Mixing silages made from PG and RG may provide a more optimal diet to dairy cows than when fed separately. We tested the hypotheses that increasing dietary proportions of grass-clover silage made from RG compared with PG would increase digestion rate of potentially degradable NDF (pdNDF), and increase ruminal accumulation of indigestible NDF (iNDF). Eight rumen cannulated Norwegian Red cows were used in two replicated 4×4 Latin squares with 21-day periods. Silages were prepared from PG and RG of an organically cultivated ley, where PG and RG silages were fed ad libitum in treatments with RG replacing PG in ratios of 0, 0.33, 0.67 and 1 on dry matter basis in addition to 8 kg concentrate. We evaluated the effect of the four diets with emphasis on rumen- and total tract fiber digestibility. Increasing RG proportions decreased silage intake by 7%. Omasal flow of pdNDF decreased, whereas iNDF flow increased with increasing RG proportions. Increasing RG proportions decreased rumen pool sizes of NDF and pdNDF, whereas pool sizes of iNDF and CP increased. Increasing RG proportions increased digestion rate of NDF, which resulted in greater total tract digestion of NDF. Pure PG diet had the highest calculated energy intake, but the improved rumen digestion of NDF by cows offered 0.33 and 0.67 of RG leveled out milk fat and protein yields among the three PG containing diets

    Sustainability aspects of milk production in Sweden

    Get PDF
    Resource use efficiency and economic initiatives point towards using less human-edible input in ruminant food production. This could also promote the nutrient-rich dairy products to consumers in comparison with alternative plant-based drinks. The global population is growing and food production will need to increase to feed more people in the future. The Swedish government has launched a national food strategy, which aims to move Swedish food production towards self-sufficiency and sustainability, and greater exports. Simultaneously, strong economic development has stimulated consumers to request more high-value foods, such as meat and refined dairy products. At the same time, public opinion states that today's food production from ruminants is negative for the environment and contributes to climate change. This review assesses some aspects of dietary ingredient composition and feeding choices that can contribute to making Swedish dairy production more sustainable. Efficient dietary methane mitigating strategies can decrease emissions of greenhouse gases in line with European Union targets and avoid major changes in dietary consumption patterns of meat and milk from ruminants. Although feeding management seems to be the most important approach to decrease nitrogen losses, rational use of fertilizers and improved manure management practices on dairy farms should also be considered to decrease the impact of nitrogen losses to the environment

    Characterization and in vitro assessment of seaweed bioactives with potential to reduce methane production

    Get PDF
    This study collates compositional analysis of seaweeds data with information generated from in vitro gas production assays in the presence and absence of seaweeds. The aim was to assess and rank 27 native northern European seaweeds as potential feed ingredients for use to reduce methane emissions from ruminants. It provides information for use in future in vivo dietary trials concerning feed manipulation strategies to reduce CH4 emissions efficiently from domestic ruminants based on dietary seaweed supplementation. The seaweeds H. siliquosa and A. nodosum belonging to phylum Phaeophyta displayed the highest concentration of phlorotannins and antioxidant activity among the macroalgae giving anti-methanogenic effect in vitro, while this explanation was not valid for the observed reduction in methane when supplementing with C. filum and L. digitata in this study. D. carnosa and C. tenuicorne belonging to phylum Rhodophyta had the highest protein content among the macroalgae that reduced methane production in vitro. There were no obvious explanation from the compositional analysis conducted in this study to the reduced methane production in vitro when supplementing with U. lactuca belonging to phylum Chlorophyta. The strongest and most complete methane inhibition in vitro was observed when supplementing with Asparagopsis taxiformis that was used as a positive control in this study

    Effect of a Low-Methane Diet on Performance and Microbiome in Lactating Dairy Cows Accounting for Individual Pre-Trial Methane Emissions

    Get PDF
    Simple Summary Low methane-emitting dietary ingredients have been identified in extensive research conducted during the past decade. This study investigated the effects of replacing grass silage with maize silage, with or without rapeseed oil supplementation, on the methane emissions and performance of dairy cows. Pre-trial measurements of methane-emissions were used in the evaluation. Partial replacement of grass silage with maize silage did not affect methane emissions but reduced dairy cow performance. Adding rapeseed oil to the diet substantially reduced methane emissions due to modified rumen microbiota, resulting in impaired nutrient intake, digestibility, and yield of energy-corrected milk. Correcting for individual cow characteristics of methane emissions did not affect the magnitude of suppression of methane emissions by dietary treatments. This study examined the effects of partly replacing grass silage (GS) with maize silage (MS), with or without rapeseed oil (RSO) supplementation, on methane (CH4) emissions, production performance, and rumen microbiome in the diets of lactating dairy cows. The effect of individual pre-trial CH4-emitting characteristics on dietary emissions mitigation was also examined. Twenty Nordic Red cows at 71 +/- 37.2 (mean +/- SD) days in milk were assigned to a replicated 4 x 4 Latin square design with four dietary treatments (GS, GS supplemented with RSO, GS plus MS, GS plus MS supplemented with RSO) applied in a 2 x 2 factorial arrangement. Partial replacement of GS with MS decreased the intake of dry matter (DM) and nutrients, milk production, yield of milk components, and general nutrient digestibility. Supplementation with RSO decreased the intake of DM and nutrients, energy-corrected milk yield, composition and yield of milk fat and protein, and general digestibility of nutrients, except for crude protein. Individual cow pre-trial measurements of CH4-emitting characteristics had a significant influence on gas emissions but did not alter the magnitude of CH4 emissions. Dietary RSO decreased daily CH4, yield, and intensity. It also increased the relative abundance of rumen Methanosphaera and Succinivibrionaceae and decreased that of Bifidobacteriaceae. There were no effects of dietary MS on CH4 emissions in this study, but supplementation with 41 g RSO/kg of DM reduced daily CH4 emissions from lactating dairy cows by 22.5%

    Reducing methane production from stored feces of dairy cows by Asparagopsis taxiformis

    Get PDF
    The objective was to evaluate whether methane (CH4) production from stored feces of cows previously supplemented with Asparagopsis taxiformis (AT) in their diet was lower compared with the feces of cows not supplemented with AT. We also investigated the possibility of further reducing CH4 production by adding AT to the stored feces of cows. Fecal samples were provided from a feeding trial (during two different periods) of four cows divided into two different groups. One group was supplemented with AT at a level of 0.5% of the total organic matter intake, and the other group was not supplemented with AT. A 2 × 2 factorial design was set in the laboratory for the incubation of feces. Fecal samples from the two groups of cows were divided into two subsamples receiving either no addition of AT or the addition of AT at a level of 0.5% of OM incubated. This resulted in four treatments with two replicates per period. The same design was repeated during period two. In total, 400 g of fresh fecal samples were incubated in 1 L serum bottles for 9 weeks at 39°C in a water bath. CH4 and total gas production were measured on days 1, 4, and 7 and subsequently every 2nd week until the end of the incubation period. Enteric CH4 production showed a significant reduction (61%) when AT was supplemented in the diet of dairy cows. We found that CH4 production from the feces of dairy cows supplemented with AT in their diet was only numerically lower (P = 0.61). Adding AT to the feces of dairy cows significantly reduced CH4 production from the feces by 44% compared with feces without AT. There were no differences observed in the bacterial and archaeal community profiles of fecal samples between cows fed AT and those not fed AT. This study concludes that the addition of AT to stored feces can effectively reduce CH4 production from the feces of dairy cows

    Effect of grassland cutting frequency, species mixture, wilting and fermentation pattern of grass silages on in vitro methane yield

    Get PDF
    Mitigating enteric methane (CH4) emissions is crucial as ruminants account for 5% of global greenhouse gas emissions. We hypothesised that less frequent harvesting, use of crops with lower WSC concentration, ensiling at low crop dry matter (DM) and extensive lactic acid fermentation would reduce in vitro CH4 production. Timothy (T), timothy + red clover mixture (T + RC) or perennial ryegrass (RG), cut either two or three times per season, was wilted to 22.5% or 37.5% DM and ensiled with or without formic acid-based additive. Silages were analysed for chemical composition and fermentation products. In vitro CH4 production was measured using an automated gas in vitro system. Methane production was, on average, 2.8 mL/g OM lower in the two-cut system than in the three-cut system (P < 0.001), and 1.9 mL/g OM lower in T than in RG (P < 0.001). Silage DM did not affect CH4 production (P = 0.235), but formic acid increased CH4 production by 1.2 mL/g OM compared to the untreated silage (P = 0.003). In conclusion, less frequent harvesting and extensive silage fermentation reduce in vitro CH4 production, while RG in comparison to T resulted in higher production of CH4.Effect of grassland cutting frequency, species mixture, wilting and fermentation pattern of grass silages on in vitro methane yieldpublishedVersio
    corecore