22 research outputs found

    The Influence of Personality Trait Variation on Curiosity Seeking Behaviours

    Get PDF
    Curiosity is defined as our desire to acquire new information and leads us to engage in information-seeking behaviours. The present study investigates how personality influences curiosity-based information-seeking behaviours during a state of curiosity induced by unsuccessful memory recall. Specifically, this study assessed the personality traits of deprivation-type (D-type), interest-type (I-type), and intolerance of uncertainty to explore their role in curiosity-based decisions making. Information-seeking choices were examined during unsuccessful recall in a paradigm using face-name pairs. The behaviour was correlated with responses from a series of questionnaires that looked at personality traits associated with curiosity and information-seeking. The findings suggested that information-seeking behaviours were positively related to curiosity. However, the associations between individuals high in the three personality constructs assessed in this study did not have a relationship with wanting to resolve curiosity. The only significant result found was between intolerance of uncertainty and high-low satisfaction rating difference. The finding suggested that when people have a low tolerance for uncertainty, they experience greater satisfaction when it is resolved. Overall results replicate previous studies in the lab and seem to show no relationship between these three traits and curiosity. It is, however, possible that other personality traits influence curiosity and curiosity-seeking behaviour. Future research is needed, however, to explore the role of different personality traits in the variation in information-seeking behaviours during states of curiosity

    Π’ΠΏΠ»ΠΈΠ² Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ Π· Ρ‚ΠΎΠΏΡ–Π½Π°ΠΌΠ±ΡƒΡ€Π° для Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Π° ΠΏΠΈΡ€ΠΎΠ³Ρ–Π² ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΎΡ— Π΅Π½Π΅Ρ€Π³Π΅Ρ‚ΠΈΡ‡Π½ΠΎΡ— цінності

    Get PDF
    The paper studied the feasibility of using inulin from Jerusalem artichoke in flour culinary products through the use of physiologically functional raw ingredients. The possibility of the use of inulin in the production of baked food products and dietary diabetic functionality. To determine the optimal dosage inulin were added to the dough in admixture with the flour in an amount of 3, 5, 7% by weight of the flour. Control samples were pie without inulin (control 1) and the cake formulation which contains 2% sugar and 3% fat (control 2). We have found that when making the inulin in an amount of 3% of the specific volume of the cake is increased by 7.2% porosity - by 2.4% as compared to control 1, and for introduction of inulin in an amount of 5% – 4.6% porosity – 1.6%. In this sample the pie with the introduction of inulin in an amount of 3% on the physical and chemical parameters significantly closer to the samples of the cake with 2% in the formulation of sugar and 3% fat. Along with the physical and chemical indicators of the pie, with the introduction of inulin in an amount of 3% hold excellent organoleptic characteristics: namely, more intense color brown, uniform porosity of the crumb structure, taste and flavor compared to the control samples, as well as the dosage of the drug in an amount 5 and 7%. According to physicochemical characteristics were better in making pie inulin samples mixed with the flour, thus increasing the specific volume was 7% porosity – 1.3% compared with samples with making pie inulin in the form of a gel. Total organoleptic evaluation showed that samples of the cake with the introduction of inulin in a mixture of flour are superior to other samples in all respects. It was found that under the influence of inulin on the quality of gluten in an amount of 3% by weight of flour increased the number of wet gluten by 3.6%, gidratsionnaya capacity – 1.4% compressive strain decreased by 11.1%, it was found a decrease in extensibility 9.1% compared to controls. When using automated penetrometer AP-4/2 to determine changes in the structural and mechanical properties of the crumb cake during storage at 3, 16, 24, 48 hours after baking were analyzed and investigated that the introduction of inulin in an amount of 3% in a mixture with flour helps to preserve the freshness of flour culinary products for a longer time than the control sample.Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ исслСдовано Ρ†Π΅Π»Π΅ΡΠΎΠΎΠ±Ρ€Π°Π·Π½ΠΎΡΡ‚ΡŒ использования ΠΈΠ½ΡƒΠ»ΠΈΠ½Π° с Ρ‚ΠΎΠΏΠΈΠ½Π°ΠΌΠ±ΡƒΡ€Π° Π² ΠΌΡƒΡ‡Π½Ρ‹Ρ… ΠΊΡƒΠ»ΠΈΠ½Π°Ρ€Π½Ρ‹Ρ… издСлиях Π½Π° основС использования физиологичСски Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½Ρ‹Ρ… ΡΡ‹Ρ€ΡŒΠ΅Π²Ρ‹Ρ… ΠΈΠ½Π³Ρ€Π΅Π΄ΠΈΠ΅Π½Ρ‚ΠΎΠ². ИсслСдована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ примСнСния ΠΈΠ½ΡƒΠ»ΠΈΠ½Π° ΠΏΡ€ΠΈ производствС ΠΌΡƒΡ‡Π½Ρ‹Ρ… ΠΊΡƒΠ»ΠΈΠ½Π°Ρ€Π½Ρ‹Ρ… ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ диабСтичСского ΠΈ диСтичСского Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ назначСния. Для опрСдСлСния ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠΉ Π΄ΠΎΠ·ΠΈΡ€ΠΎΠ²ΠΊΠΈ ΠΈΠ½ΡƒΠ»ΠΈΠ½ вносили Π² тСсто Π² смСси с ΠΌΡƒΠΊΠΎΠΉ Π² количСствС 3, 5, 7% ΠΎΡ‚ массы ΠΌΡƒΠΊΠΈ. ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ Π±Ρ‹Π»ΠΈ ΠΏΠΈΡ€ΠΎΠ³ Π±Π΅Π· ΠΈΠ½ΡƒΠ»ΠΈΠ½Π° (ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ 1) ΠΈ ΠΏΠΈΡ€ΠΎΠ³, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ содСрТит Π² Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΡƒΡ€Π΅ 2% сахара ΠΈ 3% ΠΆΠΈΡ€Π° (ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ 2). Установили, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ внСсСнии ΠΈΠ½ΡƒΠ»ΠΈΠ½Π° Π² количСствС 3% ΡƒΠ΄Π΅Π»ΡŒΠ½Ρ‹ΠΉ объСм ΠΏΠΈΡ€ΠΎΠ³Π° увСличиваСтся Π½Π° 7,2%, ΠΏΠΎΡ€ΠΈΡΡ‚ΠΎΡΡ‚ΡŒ – Π½Π° 2,4% ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ 1, Π° ΠΏΡ€ΠΈ внСсСнии ΠΈΠ½ΡƒΠ»ΠΈΠ½Π° Π² количСствС 5% – Π½Π° 4,6%, ΠΏΠΎΡ€ΠΈΡΡ‚ΠΎΡΡ‚ΡŒ – Π½Π° 1,6%. ΠŸΡ€ΠΈ этом ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΏΠΈΡ€ΠΎΠ³Π° с внСсСниСм ΠΈΠ½ΡƒΠ»ΠΈΠ½Π° Π² количСствС 3% ΠΏΠΎ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСским показатСлям Π·Π°ΠΌΠ΅Ρ‚Π½ΠΎ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ°ΡŽΡ‚ΡΡ ΠΊ ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌ ΠΏΠΈΡ€ΠΎΠ³Π°, ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… Π² Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΡƒΡ€Π΅ 2% сахара ΠΈ 3% ΠΆΠΈΡ€Π°. Наряду с Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскими показатСлями ΠΏΠΈΡ€ΠΎΠ³Π°, с внСсСниСм ΠΈΠ½ΡƒΠ»ΠΈΠ½Π° Π² количСствС 3% ΠΈΠΌΠ΅ΡŽΡ‚ мСсто ΠΎΡ‚Π»ΠΈΡ‡Π½Ρ‹Π΅ органолСптичСскиС ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ: Π±ΠΎΠ»Π΅Π΅ интСнсивная окраска ΠΊΠΎΡ€ΠΎΡ‡ΠΊΠΈ, равномСрная структура пористости мякиша, приятный вкус ΠΈ Π°Ρ€ΠΎΠΌΠ°Ρ‚ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈ Π΄ΠΎΠ·ΠΈΡ€ΠΎΠ²ΠΊΠ΅ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π² количСствС 5 ΠΈ 7%. По Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСским показатСлям Π»ΡƒΡ‡ΡˆΠΈΠΌΠΈ Π±Ρ‹Π»ΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΏΠΈΡ€ΠΎΠ³Π° ΠΏΡ€ΠΈ внСсСнии ΠΈΠ½ΡƒΠ»ΠΈΠ½Π° Π² смСси с ΠΌΡƒΠΊΠΎΠΉ, ΠΏΡ€ΠΈ этом ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ ΡƒΠ΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ объСма составил 7%, пористости – 1,3% ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ ΠΏΠΈΡ€ΠΎΠ³Π° с внСсСниСм ΠΈΠ½ΡƒΠ»ΠΈΠ½Π° Π² Π²ΠΈΠ΄Π΅ гСля. ΠžΠ±Ρ‰Π°Ρ органолСптичСская ΠΎΡ†Π΅Π½ΠΊΠ° ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΏΠΈΡ€ΠΎΠ³Π° с внСсСниСм ΠΈΠ½ΡƒΠ»ΠΈΠ½Π° Π² смСси с ΠΌΡƒΠΊΠΎΠΉ прСвосходят Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·Ρ†Ρ‹ ΠΏΠΎ всСм показатСлям. УстановлСно, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ воздСйствии ΠΈΠ½ΡƒΠ»ΠΈΠ½Π° Π½Π° качСство ΠΊΠ»Π΅ΠΉΠΊΠΎΠ²ΠΈΠ½Ρ‹ Π² количСствС 3% ΠΎΡ‚ массы ΠΌΡƒΠΊΠΈ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π»ΠΎΡΡŒ количСство сырой ΠΊΠ»Π΅ΠΉΠΊΠΎΠ²ΠΈΠ½Ρ‹ Π½Π° 3,6%, гидрационная ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ – Π½Π° 1,4%, Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†ΠΈΠΈ сТатия снизилась Π½Π° 11,1%, установлСно ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅ растяТимости Π½Π° 9,1% ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†Π°ΠΌΠΈ. ΠŸΡ€ΠΈ использовании Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΠ΅Π½Π΅Ρ‚Ρ€ΠΎ-ΠΌΠ΅Ρ‚Ρ€Π° АП-4/2 для опрСдСлСния измСнСния структурно-мСханичСских свойств мякиша ΠΏΠΈΡ€ΠΎΠ³Π° Π² процСссС Π΅Π³ΠΎ хранСния Ρ‡Π΅Ρ€Π΅Π· 3, 16, 24, 48 часов послС Π²Ρ‹ΠΏΠ΅Ρ‡ΠΊΠΈ Π±Ρ‹Π»ΠΎ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½ΠΎ ΠΈ исслСдовано, Ρ‡Ρ‚ΠΎ внСсСниС ΠΈΠ½ΡƒΠ»ΠΈΠ½Π° Π² количСствС 3% Π² смСси с ΠΌΡƒΠΊΠΎΠΉ способствуСт ΡΠΎΡ…Ρ€Π°Π½Π΅Π½ΠΈΡŽ свСТСсти ΠΌΡƒΡ‡Π½Ρ‹Ρ… ΠΊΡƒΠ»ΠΈΠ½Π°Ρ€Π½Ρ‹Ρ… ΠΈΠ·Π΄Π΅Π»ΠΈΠΉ Π±ΠΎΠ»Π΅Π΅ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ врСмя, Ρ‡Π΅ΠΌ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ ΠΎΠ±Ρ€Π°Π·Π΅Ρ†.ДослідТСно Π΄ΠΎΡ†Ρ–Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ використання Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ Π· Ρ‚ΠΎΠΏΡ–Π½Π°ΠΌΠ±ΡƒΡ€Π° Π² Π±ΠΎΡ€ΠΎΡˆΠ½ΡΠ½ΠΈΡ… ΠΊΡƒΠ»Ρ–Π½Π°Ρ€Π½ΠΈΡ… Π²ΠΈΡ€ΠΎΠ±Π°Ρ… Π½Π° основі використання Ρ„Ρ–Π·Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎ Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΈΡ… сировинних Ρ–Π½Π³Ρ€Π΅Π΄Ρ–Ρ”Π½Ρ‚Ρ–Π². ДослідТСно ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ застосування Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ ΠΏΡ€ΠΈ Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Ρ– Π±ΠΎΡ€ΠΎΡˆΠ½ΡΠ½ΠΎ-ΠΊΡƒΠ»Ρ–Π½Π°Ρ€Π½ΠΈΡ… Π²ΠΈΡ€ΠΎΠ±Ρ–Π² Π΄Ρ–Π°Π±Π΅Ρ‚ΠΈΡ‡Π½ΠΎΠ³ΠΎ Ρ‚Π° Π΄Ρ–Ρ”Ρ‚ΠΈΡ‡Π½ΠΎ-Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ призначСння. Для визначСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ дозування Ρ–Π½ΡƒΠ»Ρ–Π½ вносили Π² тісто Π² ΡΡƒΠΌΡ–ΡˆΡ– Π· Π±ΠΎΡ€ΠΎΡˆΠ½ΠΎΠΌ Ρƒ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 3, 5, 7% Π²Ρ–Π΄ маси Π±ΠΎΡ€ΠΎΡˆΠ½Π°. ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΈΠΌΠΈ Π·Ρ€Π°Π·ΠΊΠ°ΠΌΠΈ Π±ΡƒΠ»ΠΈ ΠΏΠΈΡ€Ρ–Π³ Π±Π΅Π· Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ (ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ 1) Ρ– ΠΏΠΈΡ€Ρ–Π³, який ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒ Π² Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΡƒΡ€Ρ– 2% Ρ†ΡƒΠΊΡ€Ρƒ Ρ– 3% ΠΆΠΈΡ€Ρƒ (ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒ 2). Встановили, Ρ‰ΠΎ ΠΏΡ€ΠΈ внСсСнні Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 3% ΠΏΠΈΡ‚ΠΎΠΌΠΈΠΉ обсяг ΠΏΠΈΡ€ΠΎΠ³Π° Π·Π±Ρ–Π»ΡŒΡˆΡƒΡ”Ρ‚ΡŒΡΡ Π½Π° 7,2%, ΠΏΠΎΡ€ΠΈΡΡ‚Ρ–ΡΡ‚ΡŒ – Π½Π° 2,4% порівняно Π· ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ΠΌ 1, Π° ΠΏΡ€ΠΈ внСсСнні Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 5% – Π½Π° 4,6%, ΠΏΠΎΡ€ΠΈΡΡ‚Ρ–ΡΡ‚ΡŒ – Π½Π° 1,6%. ΠŸΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ Π·Ρ€Π°Π·ΠΊΠΈ ΠΏΠΈΡ€ΠΎΠ³Π° Π· внСсСнням Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 3% Π·Π° Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ ΠΏΠΎΠΌΡ–Ρ‚Π½ΠΎ Π½Π°Π±Π»ΠΈΠΆΠ°ΡŽΡ‚ΡŒΡΡ Π΄ΠΎ Π·Ρ€Π°Π·ΠΊΡ–Π² ΠΏΠΈΡ€ΠΎΠ³Π°, Ρ‰ΠΎ ΠΌΠ°ΡŽΡ‚ΡŒ Π² Ρ€Π΅Ρ†Π΅ΠΏΡ‚ΡƒΡ€Ρ– 2% Ρ†ΡƒΠΊΡ€Ρƒ Ρ– 3% ΠΆΠΈΡ€Ρƒ. ΠŸΠΎΡ€ΡΠ΄ Π· Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ ΠΏΠΈΡ€ΠΎΠ³Π° Π· внСсСнням Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 3% ΠΊΡƒΠ»Ρ–Π½Π°Ρ€Π½ΠΈΠΉ Π²ΠΈΡ€Ρ–Π± Π²ΠΎΠ»ΠΎΠ΄Ρ–Ρ” Ρ‚Π°ΠΊΠΎΠΆ Π²Ρ–Π΄ΠΌΡ–Π½Π½ΠΈΠΌΠΈ ΠΎΡ€Π³Π°Π½ΠΎΠ»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ: ΠΌΠ°Ρ” Π±Ρ–Π»ΡŒΡˆ інтСнсивнС забарвлСння ΠΊΡ–Ρ€ΠΎΡ‡ΠΊΠΈ, Ρ€Ρ–Π²Π½ΠΎΠΌΡ–Ρ€Π½Ρƒ структуру пористості ΠΌ'ΡΠΊΡƒΡˆΠΊΠΈ, ΠΏΡ€ΠΈΡ”ΠΌΠ½ΠΈΠΉ смак Ρ– Π°Ρ€ΠΎΠΌΠ°Ρ‚ порівняно Π· ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΈΠΌΠΈ Π·Ρ€Π°Π·ΠΊΠ°ΠΌΠΈ, Π° Ρ‚Π°ΠΊΠΎΠΆ ΠΏΡ€ΠΈ Π΄ΠΎΠ·ΡƒΠ²Π°Π½Π½Ρ– ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Ρƒ Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 5 Ρ– 7%. Π—Π° Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΠΌΠΈ ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ Π½Π°ΠΉΠΊΡ€Π°Ρ‰ΠΈΠΌΠΈ Π±ΡƒΠ»ΠΈ Π·Ρ€Π°Π·ΠΊΠΈ ΠΏΠΈΡ€ΠΎΠ³Π° ΠΏΡ€ΠΈ внСсСнні Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ Π² ΡΡƒΠΌΡ–ΡˆΡ– Π· Π±ΠΎΡ€ΠΎΡˆΠ½ΠΎΠΌ, ΠΏΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ Π·Π±Ρ–Π»ΡŒΡˆΠ΅Π½Π½Ρ ΠΏΠΈΡ‚ΠΎΠΌΠΎΠ³ΠΎ об’єму склало 7%, пористості – 1,3% порівняно Π·Ρ– Π·Ρ€Π°Π·ΠΊΠ°ΠΌΠΈ ΠΏΠΈΡ€ΠΎΠ³Π° Π· внСсСнням Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ Ρƒ вигляді гСлю. Π—Π°Π³Π°Π»ΡŒΠ½Π° ΠΎΡ€Π³Π°Π½ΠΎΠ»Π΅ΠΏΡ‚ΠΈΡ‡Π½Π° ΠΎΡ†Ρ–Π½ΠΊΠ° ΠΏΠΎΠΊΠ°Π·Π°Π»Π°, Ρ‰ΠΎ Π·Ρ€Π°Π·ΠΊΠΈ ΠΏΠΈΡ€ΠΎΠ³Π° Π· внСсСнням Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ Π² ΡΡƒΠΌΡ–ΡˆΡ– Π· Π±ΠΎΡ€ΠΎΡˆΠ½ΠΎΠΌ ΠΏΠ΅Ρ€Π΅Π²Π΅Ρ€ΡˆΡƒΡŽΡ‚ΡŒ Ρ–Π½ΡˆΡ– Π·Ρ€Π°Π·ΠΊΠΈ Π·Π° всіма ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠ°ΠΌΠΈ. ВстановлСно, Ρ‰ΠΎ ΠΏΡ€ΠΈ Π²ΠΏΠ»ΠΈΠ²Ρ– Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ Π½Π° ΡΠΊΡ–ΡΡ‚ΡŒ ΠΊΠ»Π΅ΠΉΠΊΠΎΠ²ΠΈΠ½ΠΈ Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 3% Π²Ρ–Π΄ маси Π±ΠΎΡ€ΠΎΡˆΠ½Π° Π·Π±Ρ–Π»ΡŒΡˆΡƒΠ²Π°Π»Π°ΡΡ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ сирої ΠΊΠ»Π΅ΠΉΠΊΠΎΠ²ΠΈΠ½ΠΈ Π½Π° 3,6%, Π³Ρ–Π΄Ρ€Π°Ρ†Ρ–ΠΉΠ½Π° Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ – Π½Π° 1,4%, Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π΄Π΅Ρ„ΠΎΡ€ΠΌΠ°Ρ†Ρ–Ρ— стиснСння знизилася Π½Π° 11,1%, встановлСно змСншСння розтяТності Π½Π° 9,1% порівняно Π· ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΈΠΌΠΈ Π·Ρ€Π°Π·ΠΊΠ°ΠΌΠΈ. ΠŸΡ€ΠΈ використанні Π°Π²Ρ‚ΠΎΠΌΠ°Ρ‚ΠΈΠ·ΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΏΠ΅Π½Π΅Ρ‚Ρ€ΠΎΠΌΠ΅Ρ‚Ρ€Π° АП-4/2 для визначСння Π·ΠΌΡ–Π½ΠΈ структурно-ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΈΡ… властивостСй ΠΌ'ΡΠΊΡƒΡˆΠΊΠΈ ΠΏΠΈΡ€ΠΎΠ³Π° Π² процСсі ΠΉΠΎΠ³ΠΎ збСрігання Ρ‡Π΅Ρ€Π΅Π· 3, 16, 24, 48 Π³ΠΎΠ΄ΠΈΠ½ після Π²ΠΈΠΏΡ–Ρ‡ΠΊΠΈ Π±ΡƒΠ»ΠΎ ΠΏΡ€ΠΎΠ°Π½Π°Π»Ρ–Π·ΠΎΠ²Π°Π½ΠΎ Ρ– дослідТСно, Ρ‰ΠΎ внСсСння Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ Π² ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– 3% Π² ΡΡƒΠΌΡ–ΡˆΡ– Π· Π±ΠΎΡ€ΠΎΡˆΠ½ΠΎΠΌ сприяє Π·Π±Π΅Ρ€Π΅ΠΆΠ΅Π½Π½ΡŽ свіТості Π±ΠΎΡ€ΠΎΡˆΠ½ΡΠ½ΠΈΡ… ΠΊΡƒΠ»Ρ–Π½Π°Ρ€Π½ΠΈΡ… Π²ΠΈΡ€ΠΎΠ±Ρ–Π² Π±Ρ–Π»ΡŒΡˆ Ρ‚Ρ€ΠΈΠ²Π°Π»ΠΈΠΉ час, Π°Π½Ρ–ΠΆ ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΈΠΉ Π·Ρ€Π°Π·ΠΎΠΊ

    Π’ΠΏΠ»ΠΈΠ² Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ Π· Ρ‚ΠΎΠΏΡ–Π½Π°ΠΌΠ±ΡƒΡ€Π° Π½Π° ΡΠΊΡ–ΡΡ‚ΡŒ Π±ΠΎΡ€ΠΎΡˆΠ½ΡΠ½ΠΈΡ… ΠΊΡƒΠ»Ρ–Π½Π°Ρ€Π½ΠΈΡ… Π²ΠΈΡ€ΠΎΠ±Ρ–Π²

    Get PDF
    The functional and technological properties of the effect of liquid on the change of the rheological characteristics of the dough are investigated in this article, since the optimal dosage of water allows to obtain the dough from a normal consistency, dry to the touch, with good elasticity and elasticity. Overdosing of water leads to the formation of a sticky, diffuse dough. If the liquid is not injected, a Β«tightΒ» dough is obtained. Flour culinary products from such a dough get bruises, with poor porosity, low specific volume. The Β«strongerΒ» wheat flour, the more water should be introduced into the dough to produce borshchannel culinary products with the largest volume and better porosity. With Β«weakΒ» flour, on the contrary, the amount of water introduced into the dough should be reduced, because the dough turns out to be sticky, and this makes it difficult to process. At the same time, a decrease in the amount of water leads to a decrease in the yield of products and a deterioration in the economic performance of production. To determine the optimum functional and technological properties, studies were made of the effect of dough moisture with inulin on its rheological properties and the quality of flour culinary products. The consistency of the dough during the mixing was changed by dosing the water, so that the step of changing it until it was ready was 50 o. ph. in the range from 350 to 650 o. f. The control sample was a dough with a consistency of 640–650 o. f. without inulin. The duration of the kneading test was determined by the first peak on the pharynograms. The duration of the fermentation of the test was determined from the maximum value of the rate of change in the amount of carbon dioxide formed. The result of the study found that with a reduction in the consistency of the dough with inulin from 650 to 350 o. f. humidity increases from 40.6 to 44.6%, water-clogging capacity increases from 54.7 to 66.8%. The amount of mechanical energy spent on the formation of the test structure decreases from 42.7 to 23.5 kJ/kg. Plastic deformation varies from 1.6 to 4.0 mm. As a result, the physicochemical parameters of flour culinary products from inulin Jerusalem artichoke at the consistency of the test 450 and 500 o. ph. Specific volume decreased by 9%, porosity by 2%, total deformation of the pulp by 10%, brittleness by 2%, technological costs for baking and drying by 2% compared to the control sample, which makes it possible to obtain products with increased nutritional value, without deterioration organoleptic and physico-chemical indicators of finished products.  Π”ослідТСно Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎ-Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– властивості Π²ΠΏΠ»ΠΈΠ²Ρƒ Ρ€Ρ–Π΄ΠΈΠ½ΠΈ Π½Π° Π·ΠΌΡ–Π½Ρƒ Ρ€Π΅ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… характСристик тіста, ΠΎΡΠΊΡ–Π»ΡŒΠΊΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Π΅ дозування Π²ΠΎΠ΄ΠΈ дозволяє ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ тісто Π· Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½ΠΎΡŽ ΠΊΠΎΠ½ΡΠΈΡΡ‚Π΅Π½Ρ†Ρ–Ρ”ΡŽ, сухС Π½Π° Π΄ΠΎΡ‚ΠΈΠΊ, Π· Π΄ΠΎΠ±Ρ€ΠΎΡŽ Π΅Π»Π°ΡΡ‚ΠΈΡ‡Π½Ρ–ΡΡ‚ΡŽ Ρ– ΠΏΡ€ΡƒΠΆΠ½Ρ–ΡΡ‚ΡŽ. ΠŸΠ΅Ρ€Π΅Π΄ΠΎΠ·ΡƒΠ²Π°Π½Π½Ρ Ρ€Ρ–Π΄ΠΈΠ½ΠΈ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ утворСння Π»ΠΈΠΏΠΊΠΎΠ³ΠΎ, Ρ€ΠΎΠ·ΠΏΠ»ΠΈΠ²Ρ‡Π°Ρ‚ΠΎΠ³ΠΎ Ρ‚іста. ΠŸΡ€ΠΈ Π½Π΅Π΄ΠΎΡΡ‚Π°Ρ‚Π½ΡŒΠΎΠΌΡƒ Π²Π²Π΅Π΄Π΅Π½Π½Ρ– Ρ€Ρ–Π΄ΠΈΠ½ΠΈ ΠΎΡ‚Ρ€ΠΈΠΌΡƒΡŽΡ‚ΡŒ Β«Ρ‚ΡƒΠ³Π΅Β» тісто. Π‘ΠΎΡ€ΠΎΡˆΠ½ΡΠ½Ρ– ΠΊΡƒΠ»Ρ–Π½Π°Ρ€Π½Ρ– Π²ΠΈΡ€ΠΎΠ±ΠΈ Π· Ρ‚Π°ΠΊΠΎΠ³ΠΎ тіста ΠΎΡ‚Ρ€ΠΈΠΌΡƒΡŽΡ‚ΡŒ Π·Π°Π±ΠΈΡ‚Ρ–, Π· поганою ΠΏΠΎΡ€ΠΈΡΡ‚Ρ–ΡΡ‚ΡŽ, низьким ΠΏΠΈΡ‚ΠΎΠΌΠΈΠΌ ΠΎΠ±β€™Ρ”ΠΌΠΎΠΌ. Π§ΠΈΠΌ Β«ΡΠΈΠ»ΡŒΠ½Ρ–ΡˆΠ΅Β» ΠΏΡˆΠ΅Π½ΠΈΡ‡Π½Π΅ Π±ΠΎΡ€ΠΎΡˆΠ½ΠΎ, Ρ‚ΠΈΠΌ Π±Ρ–Π»ΡŒΡˆΡƒ ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ Π²ΠΎΠ΄ΠΈ слід Π²Π²ΠΎΠ΄ΠΈΡ‚ΠΈ Π² тісто для отримання Π±ΠΎΡ€ΠΎΡˆΠ½ΡΠ½ΠΈΡ… ΠΊΡƒΠ»Ρ–Π½Π°Ρ€Π½ΠΈΡ… Π²ΠΈΡ€ΠΎΠ±Ρ–Π² Π· Π½Π°ΠΉΠ±Ρ–Π»ΡŒΡˆΠΈΠΌ ΠΎΠ±'Ρ”ΠΌΠΎΠΌ Ρ– ΠΊΡ€Π°Ρ‰ΠΎΡŽ ΠΏΠΎΡ€ΠΈΡΡ‚Ρ–ΡΡ‚ΡŽ. Π—Ρ– «слабким» Π±ΠΎΡ€ΠΎΡˆΠ½ΠΎΠΌ, Π½Π°Π²ΠΏΠ°ΠΊΠΈ, ΠΊΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ Π²ΠΎΠ΄ΠΈ, Ρ‰ΠΎ Π²Π²ΠΎΠ΄ΠΈΡ‚ΡŒΡΡ Π² тісто, слід Π·Π½ΠΈΠΆΡƒΠ²Π°Ρ‚ΠΈ, Ρ‚ΠΎΠΌΡƒ Ρ‰ΠΎ Ρ‚істо Π²ΠΈΡ…ΠΎΠ΄ΠΈΡ‚ΡŒ Π»ΠΈΠΏΠΊΠΈΠΌ, Π° Ρ†Π΅ ΡƒΡΠΊΠ»Π°Π΄Π½ΡŽΡ” ΠΉΠΎΠ³ΠΎ ΠΎΠ±Ρ€ΠΎΠ±ΠΊΡƒ. ΠŸΡ€ΠΈ Ρ†ΡŒΠΎΠΌΡƒ змСншСння ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– Π²ΠΎΠ΄ΠΈ ΠΏΡ€ΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ Π΄ΠΎ зниТСння Π²ΠΈΡ…ΠΎΠ΄Ρƒ Π²ΠΈΡ€ΠΎΠ±Ρ–Π² Ρ– ΠΏΠΎΠ³Ρ–Ρ€ΡˆΠ΅Π½Π½Ρ Π΅ΠΊΠΎΠ½ΠΎΠΌΡ–Ρ‡Π½ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡ–Π² Π²ΠΈΡ€ΠΎΠ±Π½ΠΈΡ†Ρ‚Π²Π°. Для встановлСння ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΈΡ… Ρ„ΡƒΠ½ΠΊΡ†Ρ–ΠΎΠ½Π°Π»ΡŒΠ½ΠΎ-Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΈΡ… властивостСй Π±ΡƒΠ»ΠΈ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Ρ– дослідТСння Π²ΠΏΠ»ΠΈΠ²Ρƒ вологості тіста Π· Ρ–Π½ΡƒΠ»Ρ–Π½ΠΎΠΌ Π½Π° ΠΉΠΎΠ³ΠΎ Ρ€Π΅ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– властивості Ρ‚Π° ΡΠΊΡ–ΡΡ‚ΡŒ Π±ΠΎΡ€ΠΎΡˆΠ½ΡΠ½ΠΈΡ… ΠΊΡƒΠ»Ρ–Π½Π°Ρ€Π½ΠΈΡ… Π²ΠΈΡ€ΠΎΠ±Ρ–Π². ΠšΠΎΠ½ΡΠΈΡΡ‚Π΅Π½Ρ†Ρ–ΡŽ тіста ΠΏΡ€ΠΈ Π·Π°ΠΌΡ–ΡˆΡƒΠ²Π°Π½Π½Ρ– Π·ΠΌΡ–Π½ΡŽΠ²Π°Π»ΠΈ Π·Π° Ρ€Π°Ρ…ΡƒΠ½ΠΎΠΊ дозування Π²ΠΎΠ΄ΠΈ Ρ‚Π°ΠΊΠΈΠΌ Ρ‡ΠΈΠ½ΠΎΠΌ, Ρ‰ΠΎΠ± ΠΊΡ€ΠΎΠΊ Ρ—Ρ— Π·ΠΌΡ–Π½ΠΈ Π΄ΠΎ ΠΌΠΎΠΌΠ΅Π½Ρ‚Ρƒ готовності становив 50 ΠΎ.Ρ„. Π² Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½Ρ– Π²Ρ–Π΄ 350 Π΄ΠΎ 650 ΠΎ.Ρ„. ΠšΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΈΠΌ Π·Ρ€Π°Π·ΠΊΠΎΠΌ використовували тісто Π· ΠΊΠΎΠ½ΡΠΈΡΡ‚Π΅Π½Ρ†Ρ–Ρ”ΡŽ 640–650 ΠΎ.Ρ„. Π±Π΅Π· Ρ–Π½ΡƒΠ»Ρ–Π½Ρƒ. Π’Ρ€ΠΈΠ²Π°Π»Ρ–ΡΡ‚ΡŒ Π·Π°ΠΌΡ–ΡˆΡƒΠ²Π°Π½Π½Ρ Ρ‚іста Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ Π·Π° ΠΏΠ΅Ρ€ΡˆΠΈΠΌ ΠΏΡ–ΠΊΠΎΠΌ Π½Π° Ρ„Π°Ρ€ΠΈΠ½ΠΎΠ³Ρ€Π°ΠΌΡ–. Π’Ρ€ΠΈΠ²Π°Π»Ρ–ΡΡ‚ΡŒ бродіння тіста Π²ΠΈΠ·Π½Π°Ρ‡Π°Π»ΠΈ Π·Π° максимальним значСнням ΡˆΠ²ΠΈΠ΄ΠΊΠΎΡΡ‚Ρ– Π·ΠΌΡ–Π½ΠΈ ΠΊΡ–Π»ΡŒΠΊΠΎΡΡ‚Ρ– ΡƒΡ‚Π²ΠΎΡ€Π΅Π½ΠΎΠ³ΠΎ діоксиду Π²ΡƒΠ³Π»Π΅Ρ†ΡŽ. Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ– дослідТСння Π±ΡƒΠ»ΠΎ Π²ΡΡ‚Π°Π½ΠΎΠ²Π»Π΅Π½ΠΎ Ρ‰ΠΎ ΠΏΡ€ΠΈ Π·Π½ΠΈΠΆΠ΅Π½Π½Ρ– консистСнції тіста Π· Ρ–Π½ΡƒΠ»Ρ–Π½ΠΎΠΌ Π· 650 Π΄ΠΎ 350 ΠΎ. Ρ„. Π²ΠΎΠ»ΠΎΠ³Ρ–ΡΡ‚ΡŒ Π·Π±Ρ–Π»ΡŒΡˆΡƒΡ”Ρ‚ΡŒΡΡ Π· 40,6 Π΄ΠΎ 44,6%, водопоглинальна Π·Π΄Π°Ρ‚Π½Ρ–ΡΡ‚ΡŒ зростає Π· 54,7 Π΄ΠΎ 66,8% ΠšΡ–Π»ΡŒΠΊΡ–ΡΡ‚ΡŒ ΠΌΠ΅Ρ…Π°Π½Ρ–Ρ‡Π½ΠΎΡ— Π΅Π½Π΅Ρ€Π³Ρ–Ρ—, Π²ΠΈΡ‚Ρ€Π°Ρ‡Π΅Π½ΠΎΡ— Π½Π° утворСння структури тіста, Π·Π½ΠΈΠΆΡƒΡ”Ρ‚ΡŒΡΡ Π· 42,7 Π΄ΠΎ 23,5 ΠΊΠ”ΠΆ/ΠΊΠ³. ΠŸΠ»Π°ΡΡ‚ΠΈΡ‡Π½Π° дСформація Π·ΠΌΡ–Π½ΡŽΡ”Ρ‚ΡŒΡΡ Π· 1,6 Π΄ΠΎ 4,0 ΠΌΠΌ. Π’наслідок Ρ†ΡŒΠΎΠ³ΠΎ змінилися Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½Ρ– ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΠΈ Π±ΠΎΡ€ΠΎΡˆΠ½ΡΠ½ΠΈΡ… ΠΊΡƒΠ»Ρ–Π½Π°Ρ€Π½ΠΈΡ… Π²ΠΈΡ€ΠΎΠ±Ρ–Π² Π· Ρ–Π½ΡƒΠ»Ρ–Π½ΠΎΠΌ Ρ–Π· Ρ‚ΠΎΠΏΡ–Π½Π°ΠΌΠ±ΡƒΡ€Π° ΠΏΡ€ΠΈ консистСнції тіста 450 Ρ– 500 ΠΎ.Ρ„., ΠΏΠΈΡ‚ΠΎΠΌΠΈΠΉ об’єм знизився Π½Π° 9%, ΠΏΠΎΡ€ΠΈΡΡ‚Ρ–ΡΡ‚ΡŒ Π½Π° 2%, загальна дСформація ΠΌ'ΡΠΊΡƒΡˆΡƒ Π½Π° 10%, ΠΊΡ€ΠΈΡ…ΠΊΡ–ΡΡ‚ΡŒ Π½Π° 2%, Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½Ρ– Π²ΠΈΡ‚Ρ€Π°Ρ‚ΠΈ Π½Π° ΡƒΠΏΡ–ΠΊ Ρ– всихання Π½Π° 2%  ΠΏΠΎΡ€Ρ–вняно Π· ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»ΡŒΠ½ΠΈΠΌ Π·Ρ€Π°Π·ΠΊΠΎΠΌ, Ρ‰ΠΎ Π΄Π°Ρ” ΠΌΠΎΠΆΠ»ΠΈΠ²Ρ–ΡΡ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΠΌΠ°Ρ‚ΠΈ Π²ΠΈΡ€ΠΎΠ±ΠΈ Π· ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½ΠΎΡŽ Ρ…Π°Ρ€Ρ‡ΠΎΠ²ΠΎΡŽ Ρ†Ρ–Π½Π½Ρ–ΡΡ‚ΡŽ Π±Π΅Π· ΠΏΠΎΠ³Ρ–Ρ€ΡˆΠ΅Π½Π½Ρ ΠΎΡ€Π³Π°Π½ΠΎΠ»Π΅ΠΏΡ‚ΠΈΡ‡Π½ΠΈΡ… Ρ‚Π° Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½ΠΈΡ… ΠΏΠΎΠΊΠ°Π·Π½ΠΈΠΊΡ–Π² Π³ΠΎΡ‚ΠΎΠ²ΠΈΡ… Π²ΠΈΡ€ΠΎΠ±Ρ–Π². &nbsp

    Drosophila melanogaster Mutated in its GBA1b Ortholog Recapitulates Neuronopathic Gaucher Disease

    Get PDF
    Gaucher disease (GD) results from mutations in the GBA1 gene, which encodes lysosomal glucocerebrosidase (GCase). The large number of mutations known to date in the gene lead to a heterogeneous disorder, which is divided into a non-neuronopathic, type 1 GD, and two neurological, type 2 and type 3, forms. We studied the two fly GBA1 orthologs, GBA1a and GBA1b. Each contains a Minos element insertion, which truncates its coding sequence. In the GBA1a(m/m) flies, which express a mutant protein, missing 33 C-terminal amino acids, there was no decrease in GCase activity or substrate accumulation. However, GBA1b(m/m) mutant flies presented a significant decrease in GCase activity with concomitant substrate accumulation, which included C14:1 glucosylceramide and C14:0 glucosylsphingosine. GBA1b(m/m) mutant flies showed activation of the Unfolded Protein Response (UPR) and presented inflammation and neuroinflammation that culminated in development of a neuronopathic disease. Treatment with ambroxol did not rescue GCase activity or reduce substrate accumulation; however, it ameliorated UPR, inflammation and neuroinflammation, and increased life span. Our results highlight the resemblance between the phenotype of the GBA1b(m/m) mutant fly and neuronopathic GD and underlie its relevance in further GD studies as well as a model to test possible therapeutic modalities

    Drosophila melanogaster Mutated in its GBA1b Ortholog Recapitulates Neuronopathic Gaucher Disease

    Get PDF
    Gaucher disease (GD) results from mutations in the GBA1 gene, which encodes lysosomal glucocerebrosidase (GCase). The large number of mutations known to date in the gene lead to a heterogeneous disorder, which is divided into a non-neuronopathic, type 1 GD, and two neurological, type 2 and type 3, forms. We studied the two fly GBA1 orthologs, GBA1a and GBA1b. Each contains a Minos element insertion, which truncates its coding sequence. In the GBA1a(m/m) flies, which express a mutant protein, missing 33 C-terminal amino acids, there was no decrease in GCase activity or substrate accumulation. However, GBA1b(m/m) mutant flies presented a significant decrease in GCase activity with concomitant substrate accumulation, which included C14:1 glucosylceramide and C14:0 glucosylsphingosine. GBA1b(m/m) mutant flies showed activation of the Unfolded Protein Response (UPR) and presented inflammation and neuroinflammation that culminated in development of a neuronopathic disease. Treatment with ambroxol did not rescue GCase activity or reduce substrate accumulation; however, it ameliorated UPR, inflammation and neuroinflammation, and increased life span. Our results highlight the resemblance between the phenotype of the GBA1b(m/m) mutant fly and neuronopathic GD and underlie its relevance in further GD studies as well as a model to test possible therapeutic modalities

    RADIATION SWELLING AND IONIC SPUTTERING OF AUSTENITE CHROMIUM-NICKEL PRECIPITATION-HARDENING STEELS AND ALLOYS

    No full text
    Alloying principles have been worked out, and austenite steels economically alloyed with nickel, with a high resistance to radiation swelling and ionic sputtering, with sufficient operational ductility and satisfactory workability under the conditions of an open-hearth refining process and welding have been created. An essentially new trend in the development of structural materials has been presented; it is based on the use of precipitation-hardening steels. Structural sensitivity of ionic sputtering which can essentially be reduced through the corresponding thermal treatment has been established for the first time. A physical model describing the process of diminishing ionic sputtering has been built. The results obtained were used in the developments made by the Kharkov Physico-Technical Institute and "Kurchatov Institute" Centre. The steels are recommended for application in high-temperature nuclear and thermonuclear engineering.Available from VNTIC / VNTIC - Scientific & Technical Information Centre of RussiaSIGLERURussian Federatio

    PHYTO-AMELIORATION ACTIVITIES ON THE IMPROVEMENT OF DEGRADED PASTURES OF THE NORTHWESTERN CASPIAN

    No full text
    We have carried out computer reference images to geographic coordinates, saved in a separate layer and is combined with a layer of digitized topographic maps. Determining the level of degradation was carried out by the statistical average values of phototone image, and take into account the range set for each type of soil (sand) in the evaluated areas. Technology phytomeliorative works was determined taking into account the characteristics of sites, their technical condition, degradation, elevation, transportprojekte and is contained in the schemas working draft. On the technological scheme was carried out a manual landing on the medium and krupnoblochnyh the Sands with a height of sand ridges, dunes, barchan chains of 3–7 meters or more, with deep hollows blowing netratarpana difficult terrain, danger of tipping aggregates and forestry machines. In case of manual planting, the layout of the seedlings (seedlings) Calligonum (5,0 Β΄1,5)–1 333 m/ha. Manual stop of Calligonum is protected by the decomposition along the length of the landing roll of reeds. Device ordinary protections of a cane will serve for protection from blowing and drifting sand of the seedlings after planting and during vegetation and their rooting. The ordinary protection device made of reeds prevents the sand drift seedlings after planting, in the period of early vegetation and rooting and contributes to the accumulation and preservation of moisture in the thick sand root zone during the vegetation period. This all eventually led to increase the survival rate of Calligonum and its development
    corecore