138 research outputs found

    Observation of inhibited electron-ion coupling in strongly heated graphite

    Get PDF
    Creating non-equilibrium states of matter with highly unequal electron and lattice temperatures (Tele≠Tion) allows unsurpassed insight into the dynamic coupling between electrons and ions through time-resolved energy relaxation measurements. Recent studies on low-temperature laser-heated graphite suggest a complex energy exchange when compared to other materials. To avoid problems related to surface preparation, crystal quality and poor understanding of the energy deposition and transport mechanisms, we apply a different energy deposition mechanism, via laser-accelerated protons, to isochorically and non-radiatively heat macroscopic graphite samples up to temperatures close to the melting threshold. Using time-resolved x ray diffraction, we show clear evidence of a very small electron-ion energy transfer, yielding approximately three times longer relaxation times than previously reported. This is indicative of the existence of an energy transfer bottleneck in non-equilibrium warm dense matter

    X-ray scattering from warm dense iron

    Get PDF
    We have carried out X-ray scattering experiments on iron foil samples that have been compressed and heated using laser-driven shocks created with the VULCAN laser system at the Rutherford-Appleton Laboratory. This is the highest Z element studied in such experiments so far and the first time scattering from warm dense iron has been reported. Because of the importance of iron in telluric planets, the work is relevant to studies of warm dense matter in planetary interiors. We report scattering results as well as shock breakout results that, in conjunction with hydrodynamic simulations, suggest the target has been compressed to a molten state at several 100 GPa pressure. Initial comparison with modelling suggests more work is needed to understand the structure factor of warm dense iron

    Indications of flow near maximum compression in layered deuterium-tritium implosions at the National Ignition Facility

    Get PDF
    An accurate understanding of burn dynamics in implosions of cryogenically layered deuterium (D) and tritium (T) filled capsules, obtained partly through precision diagnosis of these experiments, is essential for assessing the impediments to achieving ignition at the National Ignition Facility. We present measurements of neutrons from such implosions. The apparent ion temperatures T[subscript ion] are inferred from the variance of the primary neutron spectrum. Consistently higher DT than DD T[subscript ion] are observed and the difference is seen to increase with increasing apparent DT T[subscript ion]. The line-of-sight rms variations of both DD and DT T[subscript ion] are small, ∼ 150 eV, indicating an isotropic source. The DD neutron yields are consistently high relative to the DT neutron yields given the observed T[subscript ion]. Spatial and temporal variations of the DT temperature and density, DD-DT differential attenuation in the surrounding DT fuel, and fluid motion variations contribute to a DT T[subscript ion] greater than the DD T[subscript ion], but are in a one-dimensional model insufficient to explain the data. We hypothesize that in a three-dimensional interpretation, these effects combined could explain the results.Lawrence Livermore National Laboratory (Contract No. DE-AC52- 07NA27344

    Report on 241,242Am(n,x) surrogate cross section measurement

    Get PDF
    The main goal of this measurement is to determine the {sup 242}Am(n,f) and {sup 241}Am(n,f) cross sections via the surrogate {sup 243}Am. Gamma-ray data was also collected for the purpose of measuring the (n,2n) cross-sections. The experiment was conducted using the STARS/LIBERACE experimental facility located at the 88 Inch Cyclotron at Lawrence Berkeley National Laboratory the first week of February 2011. A description of the experiment and status of the data analysis follow
    corecore