37 research outputs found

    Oncogenic Pathways and Molecular Prognostics in Neuroblastoma

    Get PDF
    Neuroblastoma is an embryonal malignancy that accounts for 15% of all cancer related deaths amongst children. Although the overall survival of patients has been improving over the last decades, the high-risk neuroblastoma patients have a survival rate of <50%. Using gene expression microarrays we identify a group of proteins (snoRNPs) whose expression correlates with poor prognosis. We futher show that the snoRNPs are involved in regulation of telomerase activity in neuroblastoma cells. Upon snoRNP knockdown there is an observed increase in anaphase bridge fromation, indicitive of elevated genetic instability. Examination of genes associated with good prognosis revealed genes involved in growth cone formation. Combination of the expressoin of growth cone associated genes with the snoRNPs resulted in a 4-gene prognostic signature. Calculating the ratio (R-score) between the expression of the good and bad prognostic genes removed the need for housekeeper normalization, and provided a means of individual patient analysis. Application of a fixed-value R-score to 3 independent cohorts using standard qPCR revealed its functionality on an individual patient basis, as well as identified a subgroup of ulta-high risk patients who could potentially benefit from new treatment modalities. Amongst high-risk neuroblastomas is a subgroup of patients harbouring MYCN-amplification. Here we show that MCYN-amplified tumours have elevated expression of the miR-17-92 cluster of miRNAs. High-throughput proteomic analysis of miR-17-92 overexpressing cells revealed enrichemnt of the TGF-ÎČ pathway. Further analyses showed miR-17-92 targeted inhibition of the TGF-ÎČ pathway at multiple levels, resulting in increased tumourigenic capacity of the neuroblastoma cells. Using primarily breast cancer cells, we identified a hypoxia driven induction of the Notch-ligand JAG2. Deminished expression of JAG2 in hypoxic tumour cells resulted in a reduced capacity of neighbouring endothelial cells to form tubes. Evaluation of these results in neuroblastoma revealed a similar pattern of Notch-ligand dependent crosstalk between tumour and endothelial cells, however in this case with via DLL1. Here we have investigated, with a focus on high-risk patients, key signalling patways that are involved in the maintenance and progression of the disease. In addition, we describe a novel prognostic signature that has clinical implications for specifically high-risk patients

    Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome

    Get PDF
    AbstractHypoxia-inducible factors (HIFs) are differentially regulated in tumor cells. While the current paradigm supports post-translational regulation of the HIF-α subunits, we recently showed that hypoxic HIF-2α is also transcriptionally regulated via insulin-like growth factor (IGF)-II in the childhood tumor neuroblastoma. Here, we demonstrate that transcriptional regulation of HIF-2α seems to be restricted to neural cell-derived tumors, while HIF-1α is canonically regulated at the post-translational level uniformly across different tumor forms. Enhanced expression of HIF2A mRNA at hypoxia is due to de novo transcription rather than increased mRNA stability, and chemical stabilization of the HIF-α proteins at oxygen-rich conditions unexpectedly leads to increased HIF2A transcription. The enhanced HIF2A levels do not seem to be dependent on active HIF-1. Using a transcriptome array approach, we identified members of the Peroxisome proliferator-activated receptor gamma coactivator (PGC)/Estrogen-related receptor (ERR) complex families as potential regulators of HIF2A. Knockdown or inhibition of one of the members, ERRα, leads to decreased expression of HIF2A, and high expression of the ERRα gene ESRRA correlates with poor overall and progression-free survival in a clinical neuroblastoma material consisting of 88 tumors. Thus, targeting of ERRα and pathways regulating transcriptional HIF-2α are promising therapeutic avenues in neuroblastoma

    Anti-tumor effects of PIM/PI3K/mTOR triple kinase inhibitor IBL-302 in neuroblastoma

    Get PDF
    The PI3K pathway is a major driver of cancer progression. However, clinical resistance to PI3K inhibition is common. IBL-302 is a novel highly specific triple PIM, PI3K, and mTOR inhibitor. Screening IBL-302 in over 700 cell lines representing 47 tumor types identified neuroblastoma as a strong candidate for PIM/PI3K/mTOR inhibition. IBL-302 was more effective than single PI3K inhibition in vitro, and IBL-302 treatment of neuroblastoma patient-derived xenograft (PDX) cells induced apoptosis, differentiated tumor cells, and decreased N-Myc protein levels. IBL-302 further enhanced the effect of the common cytotoxic chemotherapies cisplatin, doxorubicin, and etoposide. Global genome, proteome, and phospho-proteome analyses identified crucial biological processes, including cell motility and apoptosis, targeted by IBL-302 treatment. While IBL-302 treatment alone reduced tumor growth in vivo, combination therapy with low-dose cisplatin inhibited neuroblastoma PDX growth. Complementing conventional chemotherapy treatment with PIM/PI3K/mTOR inhibition has the potential to improve clinical outcomes and reduce severe late effects in children with high-risk neuroblastoma.This work was supported by funding from the Swedish Cancer Society (to SM, DB), the Swedish Research Council (to DB), the Swedish Childhood Cancer Fund (to SM, KvS, DB), Region SkĂ„ne and the research funds of SkĂ„ne University Hospital (to DB), the Mary BevĂ© Foundation (to SM, KvS, DB), Magnus Bergvalls stiftelse (to SM, DB), the Thelma ZoĂ©ga Foundation (to SM), Hans von Kantzow Foundation (to SM), Crafoord Foundation (to DB), Åke Wiberg Foundation (to DB), Jeanssons Stiftelser (to DB), Ollie och Elof Ericssons stiftelser (to DB), Berth von Kantzows stiftelse (to DB), the Royal Physiographic Society of Lund (to SM, DB), and the Spanish Ministry of Health and Social Policy (ADE 08 / 90038 ) and the Spanish Ministry of Science and Innovation (CIT- 090000 - 2008 - 14 ) (to JP, SMa, CBA). We would like to thank the Local MS Support at Medical Faculty, Lund University. The authors would like to acknowledge support of the National Genomics Infrastructure (NGI)/Uppsala Genome Center and UPPMAX for providing assistance in massive parallel sequencing and computational infrastructure. Work performed at NGI/Uppsala Genome Center has been funded by RFI/VR and Science for Life Laboratory, SwedenS

    Refined control of cell stemness allowed animal evolution in the oxic realm

    No full text
    Animal diversification on Earth has long been presumed to be associated with the increasing extent of oxic niches. Here, we challenge that view. We start with the fact that hypoxia (<1-3% O2) maintains cellular immaturity (stemness), whereas adult stem cells continuously - and paradoxically - regenerate animal tissue in oxygenated settings. Novel insights from tumour biology illuminate how cell stemness nevertheless can be achieved through the action of oxygen-sensing transcription factors in oxygenated, regenerating tissue. We suggest that these hypoxia-inducible transcription factors provided animals with unprecedented control over cell stemness that allowed them to cope with fluctuating oxygen concentrations. Thus, a refinement of the cellular hypoxia-response machinery enabled cell stemness at oxic conditions and, then, animals to evolve into the oxic realm. This view on the onset of animal diversification is consistent with geological evidence and provides a new perspective on the challenges and evolution of multicellular life

    JAG2 induction in hypoxic tumor cells alters Notch signaling and enhances endothelial cell tube formation.

    No full text
    Several studies have revealed links between hypoxia and activation of Notch in solid tumors. While most reports have focused on icN1 stabilization by direct interaction with HIF proteins, little attention has been given to Notch ligand regulation during hypoxia. Here we show that the Notch ligand JAG2 is transcriptionally activated by hypoxia in a HIF-1α dependent manner. Hypoxic JAG2 induction resulted in elevated Notch activity in tumor cells, as was measured by increased icN1 levels and induction of the Notch target gene HEY1. In primary tumor material, JAG2 expression correlated with vascular development and angiogenesis gene signatures. In line with this, co-culture experiments of endothelial cells with hypoxic breast cancer cells displayed a reduction in number of capillary-like tubes formed upon JAG2 siRNA treatment of the breast cancer cells. Together these results suggest that a hypoxic induction of JAG2 in tumor cells mediates a hypoxia-regulated cross-talk between tumor and endothelial cells

    Musculocontractural Ehlers-Danlos syndrome and neurocristopathies : Dermatan sulfate is required for Xenopus neural crest cells to migrate and adhere to fibronectin

    No full text
    Of all live births with congenital anomalies, approximately one-third exhibit deformities ofthe head and face. Most craniofacial disorders are associated with defects in a migratory stem and progenitor cell population, which is designated the neural crest (NC). Musculocontractural Ehlers-Danlos syndrome (MCEDS) is a heritable connective tissue disorder with distinct craniofacial features; this syndrome comprises multiple congenital malformations that are caused bydysfunction ofdermatan sulfate (DS) biosynthetic enzymes, including DS epimerase-1 (DS-epi1; also known as DSE). Studies in mice have extended our understanding of DS-epi1 inconnective tissue maintenance; however, its role in fetal development is not understood. We demonstrate that DS-epi1isimportant for the generationofisolated iduronic acid residues in chondroitin sulfate (CS)/DS proteoglycans in early Xenopus embryos. The knockdown of DS-epi1 does not affect the formation of early NC progenitors; however, it impairs the correct activation of transcription factors involved in the epithelial-mesenchymal transition (EMT) and reduces the extent of NC cell migration, which leads to a decrease in NC-derived craniofacial skeleton, melanocytes and dorsal fin structures. Transplantation experiments demonstrate a tissue-autonomous role for DS-epi1 in cranial NC cell migration in vivo. Cranial NC explant and single-cell cultures indicate a requirement of DS-epi1 in cell adhesion, spreading and extension of polarized cell processes on fibronectin. Thus, our work indicates a functional link between DS and NC cell migration. We conclude that NC defects in the EMT and cell migration might account for the craniofacial anomalies and other congenital malformations in MCEDS, which might facilitate the diagnosis and development of therapies for this distressing condition. Moreover, the presented correlations between human DS-epi1 expression and gene sets of mesenchymal character, invasion and metastasis in neuroblastoma and malignant melanoma suggest an association between DS and NC-derived cancers

    Predominance of girls with cancer in families with multiple childhood cancer cases

    No full text
    Background: Recent studies indicate that one of four childhood cancers can be attributed to hereditary genetic abnormalities. Methods: The Lund Childhood Cancer Genetic study includes newly diagnosed childhood cancer patients as well as childhood cancer survivors visiting the Department of Pediatrics or the Late Effect Clinic at SkÄne University Hospital, Lund, Sweden. Questionnaires regarding family history of cancer and blood samples were provided. Reported data were validated and extended by use of the Swedish Population- and Cancer Registries. Demographics in families with one case of childhood cancer (FAM1) were investigated and compared to families with multiple cases of childhood cancer (FAM > 1) as well as to childhood cancer in the general population. Results: Forty-one out of 528 families (7.8%) had more than one case of childhood cancer. In 23 families the affected children were relatives up to a 3rd degree (4.4%). In FAM > 1, 69.2% of the children with leukemia and 60% of those with tumors in the central nervous system (CNS) had a childhood relative with matching diagnosis, both significantly higher than expected. Significantly more female than male patients were observed in FAM > 1 compared to FAM1. This female predominance was most striking in childhood leukemia (77% female) and also, yet to a lesser extent, in CNS tumors (68% female). Conclusions: We conclude that the high proportion of children with leukemia or CNS tumors in FAM > 1 having a childhood relative with the same diagnosis suggests a hereditary background. Moreover, we report a female predominance in childhood leukemia and childhood CNS tumors in FAM > 1, which may indicate a hereditary gender-specific risk factor in these families
    corecore