10 research outputs found

    Fractures and survival in multiple myeloma : results from a population-based study

    Get PDF
    Publisher Copyright: Copyright© 2020 Ferrata Storti Foundation.Multiple myeloma causes lytic bone lesions and fractures. The impact of fractures on multiple myeloma (MM) survival is unclear. The aim of this study was to evaluate the effect of fractures on survival in MM using data from MM patients diagnosed in Sweden in the years 1990-2013, identified from the Swedish Cancer Registry. Information on date of birth, MM diagnosis, fractures, and death was collected from central registries. A Cox regression model was used to compare survival in patients with and without a fracture at MM diagnosis and another Cox model was used with fracture as a time-dependent variable to assess the effect of fracture on survival after MM diagnosis. Results were adjusted for age, sex, year of diagnosis, and previous fractures. A total of 14,013 patients were diagnosed with MM during the study, of whom 1,213 (8.7%) were diagnosed with a fracture at MM diagnosis, and 3,235 (23.1%) after diagnosis. Patients with a fracture at diagnosis were at a significantly increased risk of death (hazard ratio=1.28; 95% confidence interval: 1.19-1.37). The risk of death was significantly increased in patients with a fracture after MM diagnosis (2.00; 1.90-2.10). The impact of fractures on survival did not change significantly between the two calendar periods 1990-1999 and 2000-2013 (0.98; 0.89-1.08). Our large study shows that MM patients with fractures are at a significantly increased risk of dying compared to those without fractures, which stresses the importance of preventing bone disease in MM.Peer reviewe

    Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

    Get PDF
    Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM.</p

    Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

    Get PDF
    Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight

    Mass spectrometry for the evaluation of monoclonal proteins in multiple myeloma and related disorders: an International Myeloma Working Group Mass Spectrometry Committee Report

    Get PDF
    Plasma cell disorders (PCDs) are identified in the clinical lab by detecting the monoclonal immunoglobulin (M-protein) which they produce. Traditionally, serum protein electrophoresis methods have been utilized to detect and isotype Mproteins. Increasing demands to detect low-level disease and new therapeutic monoclonal immunoglobulin treatments have stretched the electrophoretic methods to their analytical limits. Newer techniques based on mass spectrometry (MS) are emerging which have improved clinical and analytical performance. MS is gaining traction into clinical laboratories, and has replaced immunofixation electrophoresis (IFE) in routine practice at one institution. The International Myeloma Working Group (IMWG) Mass Spectrometry Committee reviewed the literature in order to summarize current data and to make recommendations regarding the role of mass spectrometric methods in diagnosing and monitoring patients with myeloma and related disorders. Current literature demonstrates that immune-enrichment of immunoglobulins coupled to intact light chain MALDI-TOF MS has clinical characteristics equivalent in performance to IFE with added benefits of detecting additional risk factors for PCDs, differentiating Mprotein from therapeutic antibodies, and is a suitable replacement for IFE for diagnosing and monitoring multiple myeloma and related PCDs. In this paper we discuss the IMWG recommendations for the use of MS in PCDs

    Author Correction: Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

    No full text
    The original version of this Article contained an error in the spelling of a member of the PRACTICAL Consortium, Manuela Gago-Dominguez, which was incorrectly given as Manuela Gago Dominguez. This has now been corrected in both the PDF and HTML versions of the Article. Furthermore, in the original HTML version of this Article, the order of authors within the author list was incorrect. The PRACTICAL consortium was incorrectly listed after Richard S. Houlston and should have been listed after Nora Pashayan. This error has been corrected in the HTML version of the Article; the PDF version was correct at the time of publication.</p

    Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma.

    Get PDF
    Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM

    Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

    No full text
    Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM

    Author Correction: Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma

    Get PDF
    The original version of this Article contained an error in the spelling of a member of the PRACTICAL Consortium, Manuela Gago-Dominguez, which was incorrectly given as Manuela Gago Dominguez. This has now been corrected in both the PDF and HTML versions of the Article. Furthermore, in the original HTML version of this Article, the order of authors within the author list was incorrect. The PRACTICAL consortium was incorrectly listed after Richard S. Houlston and should have been listed after Nora Pashayan. This error has been corrected in the HTML version of the Article; the PDF version was correct at the time of publication
    corecore