45 research outputs found

    Delivery time reduction for mixed photon-electron radiotherapy by using photon MLC collimated electron arcs.

    Get PDF
    Electron arcs in mixed-beam radiotherapy (Arc-MBRT) consisting of intensity-modulated electron arcs with dynamic gantry rotation potentially reduce the delivery time compared to mixed-beam radiotherapy containing electron beams with static gantry angle (Static-MBRT). This study aims to develop and investigate a treatment planning process (TPP) for photon multileaf collimator (pMLC) based Arc-MBRT.

Approach: An existing TPP for Static-MBRT plans is extended to integrate electron arcs with a dynamic gantry rotation and intensity modulation using a sliding window technique. The TPP consists of a manual setup of electron arcs, and either static photon beams or photon arcs, shortening of the source-to-surface distance for the electron arcs, initial intensity modulation optimization, selection of a user-defined number of electron beam energies based on dose contribution to the target volume and finally, simultaneous photon and electron intensity modulation optimization followed by full Monte Carlo dose calculation. Arc-MBRT plans, Static-MBRT plans, and photon-only plans were created and compared for four breast cases. Dosimetric validation of two Arc-MBRT plans was performed using film measurements.

Main results: The generated Arc-MBRT plans are dosimetrically similar to the Static-MBRT plans while outperforming the photon-only plans. The mean heart dose is reduced by 32% on average in the MBRT plans compared to the photon-only plans. The estimated delivery times of the Arc-MBRT plans are similar to the photon-only plans but less than half the time of the Static-MBRT plans. Measured and calculated dose distributions agree with a gamma passing rate of over 98% (3% global, 2 mm) for both delivered Arc-MBRT plans. 

Significance: A TPP for Arc-MBRT is successfully developed and Arc-MBRT plans showed the potential to improve the dosimetric plan quality similar as Static-MBRT while maintaining short delivery times of photon-only treatments. This further facilitates integration of pMLC-based MBRT into clinical practice

    Survey on brachytherapy training among radiation oncology residents in the German-speaking regions of Europe.

    Get PDF
    PURPOSE This survey aimed to determine the perception of brachytherapy training among residents in the DACH region, consisting of Austria, Germany and Switzerland. MATERIAL & METHODS An online questionnaire containing 22 questions related to trainee demographics (n = 5) and to brachytherapy training (n = 17) was sent in two iterations in 11/2019 and 02/2020. The following topics were evaluated: institutional support, barriers to training, extent of training, site-specific training (prostate, gynaecology, breast, gastrointestinal and skin), preferences for further training and outlook on overall development of brachytherapy. The responses were mostly based on a Likert scale of 1 to 5, thereby reflecting strength of opinion. Descriptive statistics were used to describe frequencies. RESULTS Among the 108 respondents, approximately 69% of residents considered the ability to perform brachytherapy independently to be important or somewhat important. However, only 31% of respondents reported to have a dedicated brachytherapy training during residency. The major limitation to achieve independence in performing brachytherapy was seen in a low case load in Austria, in the lack of training in Switzerland and in both of them in Germany. CONCLUSION The interest in brachytherapy training among residents in German-speaking countries was generally high, but there is a perceived lack of sufficient case volumes and partially also in formal training opportunities. Fellowships at departments with a high case load as part of a formalised curriculum and dedicated hands-on workshops at national or international conferences might help to overcome these issues

    an analysis of the ClinicalTrials.gov database

    Get PDF
    Background To evaluate the current status of prospective interventional clinical trials that includes brachytherapy (BT) procedures. Methods The records of 175,538 (100 %) clinical trials registered at ClinicalTrials.gov were downloaded on September 2014 and a database was established. Trials using BT as an intervention were identified for further analyses. The selected trials were manually categorized according to indication(s), BT source, applied dose rate, primary sponsor type, location, protocol initiator and funding source. We analyzed trials across 8 available trial protocol elements registered within the database. Results In total 245 clinical trials were identified, 147 with BT as primary investigated treatment modality and 98 that included BT as an optional treatment component or as part of the standard treatment. Academic centers were the most frequent protocol initiators in trials where BT was the primary investigational treatment modality (p < 0.01). High dose rate (HDR) BT was the most frequently investigated type of BT dose rate (46.3 %) followed by low dose rate (LDR) (42.0 %). Prostate was the most frequently investigated tumor entity in trials with BT as the primary treatment modality (40.1 %) followed by breast cancer (17.0 %). BT was rarely the primary investigated treatment modality for cervical cancer (6.8 %). Conclusion Most clinical trials using BT are predominantly in early phases, investigator-initiated and with low accrual numbers. Current investigational activities that include BT mainly focus on prostate and breast cancers. Important questions concerning the optimal usage of BT will not be answered in the near future

    Portfolio of prospective clinical trials including brachytherapy: an analysis of the ClinicalTrials.gov database

    Get PDF
    Background: To evaluate the current status of prospective interventional clinical trials that includes brachytherapy (BT) procedures. Methods: The records of 175,538 (100 %) clinical trials registered at ClinicalTrials.gov were downloaded on September 2014 and a database was established. Trials using BT as an intervention were identified for further analyses. The selected trials were manually categorized according to indication(s), BT source, applied dose rate, primary sponsor type, location, protocol initiator and funding source. We analyzed trials across 8 available trial protocol elements registered within the database. Results: In total 245 clinical trials were identified, 147 with BT as primary investigated treatment modality and 98 that included BT as an optional treatment component or as part of the standard treatment. Academic centers were the most frequent protocol initiators in trials where BT was the primary investigational treatment modality (p<0.01). High dose rate (HDR) BT was the most frequently investigated type of BT dose rate (46.3 %) followed by low dose rate (LDR) (42.0 %). Prostate was the most frequently investigated tumor entity in trials with BT as the primary treatment modality (40.1 %) followed by breast cancer (17.0 %). BT was rarely the primary investigated treatment modality for cervical cancer (6.8 %). Conclusion: Most clinical trials using BT are predominantly in early phases, investigator-initiated and with low accrual numbers. Current investigational activities that include BT mainly focus on prostate and breast cancers. Important questions concerning the optimal usage of BT will not be answered in the near future

    Highly conformal combined radiotherapy with cisplatin and gemcitabine for treatment of loco-regionally advanced cervical cancer - a retrospective study.

    Get PDF
    BACKGROUND Cisplatin and gemcitabine combined with conventional radiation therapy in the treatment of cervical cancer patients results in a favorable outcome but with excess toxicity. The purpose of this study was to evaluate the toxicity profile of dual chemotherapy and highly conformal external beam radiotherapy with image guided adaptive brachytherapy. METHODS Seventeen patients with cervical carcinoma FIGO stage IB2-IIIB were treated with curative intent between 2011 and 2015. A total dose of 50.4 Gy was prescribed to the elective pelvic nodal volume. Patients with 18FDG-PET/CT positive lymph nodes (n = 15; 83.3%) received an additional boost to a total dose of 62 Gy. Chemotherapy prescription goals were: concomitant during 5 weeks of external beam radiotherapy (EBRT) 40 mg/m2 cisplatin and 125 mg/m2 gemcitabine, followed by adjuvant chemotherapy from week 10 (2 cycles 50 mg/m2 cisplatin and 1000 mg/m2 gemcitabine). EBRT was followed by 3-4 fractions (6 Gy per fraction) of intrauterine image guided adaptive brachytherapy. Toxicities were graded according to the common terminology criteria for adverse events (CTCAE v 4.0). RESULTS One (6%) patient developed acute grade 3 diarrhea. We did not record any other acute or late gastrointestinal or urogenital toxicity higher that grade 3. Most common acute hematological toxicity was anemia grade 2 recorded in 10 (59%) patients. There was only one case of grade 3 neutropenia (6%). The number of patients that received the complete chemotherapy regimen was gradually declining during the course of therapy. From week 2 to 5, gemcitabine was omitted in 4 (24%),7 (41%), 8 (47%), and 12 (71%) patients respectively, similarly, cisplatin was omitted in 2 (12%),3 (18%),1 (6%) and 7 (41%) patients respectively. Adjuvant chemotherapy was omitted in 8 patients (47%). During a median follow-up time of 20 months (5 to 63 months) 6 (35%) patients developed disease relapse with 5 (29%) of them in the form of systemic disease. CONCLUSIONS In contrast to previous findings cisplatin and gemcitabine in combination with highly conformal radiation therapy seems to have an acceptable toxicity profile. Further studies are needed to determine the optimal dosage of the proposed therapy concept

    Role of Brachytherapy in the Postoperative Management of Endometrial Cancer: Decision-Making Analysis among Experienced European Radiation Oncologists.

    Get PDF
    BACKGROUND There are various society-specific guidelines addressing adjuvant brachytherapy (BT) after surgery for endometrial cancer (EC). However, these recommendations are not uniform. Against this background, clinicians need to make decisions despite gaps between best scientific evidence and clinical practice. We explored factors influencing decision-making for adjuvant BT in clinical routine among experienced European radiation oncologists in the field of gynaecological radiotherapy (RT). We also investigated the dose and technique of BT. METHODS Nineteen European experts for gynaecological BT selected by the Groupe Européen de Curiethérapie and the European Society for Radiotherapy & Oncology provided their decision criteria and technique for postoperative RT in EC. The decision criteria were captured and converted into decision trees, and consensus and dissent were evaluated based on the objective consensus methodology. RESULTS The decision criteria used by the experts were tumour extension, grading, nodal status, lymphovascular invasion, and cervical stroma/vaginal invasion (yes/no). No expert recommended adjuvant BT for pT1a G1-2 EC without substantial LVSI. Eighty-four percent of experts recommended BT for pT1a G3 EC without substantial LVSI. Up to 74% of experts used adjuvant BT for pT1b LVSI-negative and pT2 G1-2 LVSI-negative disease. For 74-84% of experts, EBRT + BT was the treatment of choice for nodal-positive pT2 disease and for pT3 EC with cervical/vaginal invasion. For all other tumour stages, there was no clear consensus for adjuvant treatment. Four experts already used molecular markers for decision-making. Sixty-five percent of experts recommended fractionation regimens of 3 × 7 Gy or 4 × 5 Gy for BT as monotherapy and 2 × 5 Gy for combination with EBRT. The most commonly used applicator for BT was a vaginal cylinder; 82% recommended image-guided BT. CONCLUSIONS There was a clear trend towards adjuvant BT for stage IA G3, stage IB, and stage II G1-2 LVSI-negative EC. Likewise, there was a non-uniform pattern for BT dose prescription but a clear trend towards 3D image-based BT. Finally, molecular characteristics were already used in daily decision-making by some experts under the pretext that upcoming trials will bring more clarity to this topic

    Current status and perspectives of interventional clinical trials for glioblastoma - analysis of ClinicalTrials.gov

    Get PDF
    The records of 208.777 (100%) clinical trials registered at ClinicalTrials.gov were downloaded on the 19th of February 2016. Phase II and III trials including patients with glioblastoma were selected for further classification and analysis. Based on the disease settings, trials were classified into three groups: newly diagnosed glioblastoma, recurrent disease and trials with no differentiation according to disease setting. Furthermore, we categorized trials according to the experimental interventions, the primary sponsor, the source of financial support and trial design elements. Trends were evaluated using the autoregressive integrated moving average model. Two hundred sixteen (0.1%) trials were selected for further analysis. Academic centers (investigator initiated trials) were recorded as primary sponsors in 56.9% of trials, followed by industry 25.9%. Industry was the leading source of monetary support for the selected trials in 44.4%, followed by 25% of trials with primarily academic financial support. The number of newly initiated trials between 2005 and 2015 shows a positive trend, mainly through an increase in phase II trials, whereas phase III trials show a negative trend. The vast majority of trials evaluate forms of different systemic treatments (91.2%). In total, one hundred different molecular entities or biologicals were identified. Of those, 60% were involving drugs specifically designed for central nervous system malignancies. Trials that specifically address radiotherapy, surgery, imaging and other therapeutic or diagnostic methods appear to be rare. Current research in glioblastoma is mainly driven or sponsored by industry, academic medical oncologists and neuro-oncologists, with the majority of trials evaluating forms of systemic therapies. Few trials reach phase III. Imaging, radiation therapy and surgical procedures are underrepresented in current trials portfolios. Optimization in research portfolio for glioblastoma is needed
    corecore