109 research outputs found

    The role of DNA repair gene Ercc1 in the liver

    Get PDF
    The ERCC1/XPF complex is responsible for incision at the 5' side of the DNA lesion during nucleotide excision repair and is also involved in homologous recombination and inter-strand cross-link repair. The aim of the current study was to set up a better model for examination ofErccl deficiency in the liver and to determine the DNA lesions responsible. Initially, we used the Cre/lox system with the floxed Erccl gene and a tamoxifen- inducible liver- specific Cre transgene. However, only low and irreproducible levels ofrecombination were detected in vivo or in vitro with no consistent biological effects. We therefore switched to a cell culture approach using the loxP system and an AdenoCre virus. AdenoCre infection of hepatocyte cultures led to high levels of recombination with no ERCC1 protein remaining at 48 hours after infection. Flow cytometry failed to show high levels of polyploidy in knockout hepatocytes 1 week after infection. This differed from the premature polyploidy seen in this study in Erccl- deficient livers. We used AdenoCre to reduce ERCC1 levels in adult liver in vivo. Low levels ofrecombination resulted in increased ploidy, indicating that polyploidisation may be a protective mechanism triggered by increased levels of DNA damage in Erccl- deficient liver. Erccl- deficient hepatocytes in vitro underwent higher levels of spontaneous, UV- and oxidative damage- induced apoptosis than control cultures, implying that Erccl is essential for liver maintenance. Lipid accumulation was observed in older Erccl- deficient hepatocyte cultures, one week after AdenoCre infection in vivo and also in young Erccl- deficient and wild type livers. Lipids disappeared in the wild type controls with age, but persisted in Erccl Null livers. These findings suggest that a reduced ability to repair oxidative DNA damage and a malfunction of oxidative pathways could be responsible for the Erccl- deficient liver phenotype. Regeneration of liver following exposure to carbon tetrachloride in AdenoCre infected livers led to an increase in ploidy and S-phase independent of genotype, masking the increased ploidy resulting from AdenoCre induced Erccl deficiency. Livers from simple Erccl knockout mice showed no increase in malondialdehyde adducts. However, higher levels of reactive oxygen species were detected in young Erccl- deficient livers compared to controls. RT Real- time PCR was used to determine differences in expression of cell cycle regulation and survival genes between Erccl- deficient and control livers. We succeeded in characterising Erccl deficiency in the liver furthe

    Multiplexing for Oxidative Bisulfite Sequencing (oxBS-seq).

    Get PDF
    DNA modifications, especially methylation, are known to play a crucial part in many regulatory processes in the cell. Recently, 5-hydroxymethylcytosine (5hmC) was discovered, a DNA modification derived as an intermediate of 5-methylcytosine (5mC) oxidation. Efforts to gain insights into function of this DNA modification are underway and several methods were recently described to assess 5hmC levels using sequencing approaches. Here we integrate adaptation based multiplexing and high-efficiency library prep into the oxidative Bisulfite Sequencing (oxBS-seq) workflow reducing the starting amount and cost per sample to identify 5hmC levels genome-wide

    Improving outcomes in chronic myeloid leukemia through harnessing the immunological landscape

    Get PDF
    The quest for treatment-free remission (TFR) and deep molecular response (DMR) in chronic myeloid leukemia (CML) has been profoundly impacted by tyrosine kinase inhibitors (TKIs). Immunologic surveillance of residual leukemic cells is hypothesized to be one of the critical factors in successful TFR, with self-renewing leukemic stem cells implicated in relapse. Immunological characterization in CML may help to develop novel immunotherapies that specifically target residual leukemic cells upon TKI discontinuation to improve TFR rates. This review focuses on immune dysfunction in newly diagnosed CML patients, and the role that TKIs and other therapies have in restoring immune surveillance. Immune dysfunction and immunosurveillance in CML points towards several emerging areas in the key goals of DMR and TFR, including: (1) Aspects of innate immune system, in particular natural killer cells and the newly emerging target plasmacytoid dendritic cells. (2) The adaptive immune system, with promise shown in regard to leukemia-associated antigen vaccine-induced CD8 cytotoxic T-cells (CTL) responses, increased CTL expansion, and immune checkpoint inhibitors. (3) Immune suppressive myeloid-derived suppressor cells and T regulatory cells that are reduced in DMR and TFR. (4) Immunomodulator mesenchymal stromal cells that critically contribute to leukomogenesis through immunosuppressive properties and TKI- resistance. Therapeutic strategies that leverage existing immunological approaches include donor lymphocyte infusions, that continue to be used, often in combination with TKIs, in patients relapsing following allogeneic stem cell transplant. Furthermore, previous standards-of-care, including interferon-α, hold promise in attaining TFR in the post-TKI era. A deeper understanding of the immunological landscape in CML is therefore vital for both the development of novel and the repurposing of older therapies to improve TFR outcomes

    Experimental design for single-cell RNA sequencing

    Get PDF
    Single-cell RNA sequencing (scRNA-seq) has opened new avenues for the characterization of heterogeneity in a large variety of cellular systems. As this is a relatively new technique, the field is fast evolving. Here, we discuss general considerations in experimental design and the two most popular approaches, plate-based Smart-Seq2 and microdroplet-based scRNA-seq at the example of 10x Chromium. We discuss advantages and disadvantages of both methods and point out major factors to consider in designing successful experiments

    Self-renewal of single mouse hematopoietic stem cells is reduced by JAK2V617F without compromising progenitor cell expansion

    Get PDF
    Recent descriptions of significant heterogeneity in normal stem cells and cancers have altered our understanding of tumorigenesis, emphasizing the need to understand how single stem cells are subverted to cause tumors. Human myeloproliferative neoplasms (MPNs) are thought to reflect transformation of a hematopoietic stem cell (HSC) and the majority harbor an acquired V617F mutation in the JAK2 tyrosine kinase, making them a paradigm for studying the early stages of tumor establishment and progression. The consequences of activating tyrosine kinase mutations for stem and progenitor cell behavior are unclear. In this article, we identify a distinct cellular mechanism operative in stem cells. By using conditional knock-in mice, we show that the HSC defect resulting from expression of heterozygous human JAK2V617F is both quantitative (reduced HSC numbers) and qualitative (lineage biases and reduced self-renewal per HSC). The defect is intrinsic to individual HSCs and their progeny are skewed toward proliferation and differentiation as evidenced by single cell and transplantation assays. Aged JAK2V617F show a more pronounced defect as assessed by transplantation, but mice that transform reacquire competitive self-renewal ability. Quantitative analysis of HSC-derived clones was used to model the fate choices of normal and JAK2-mutant HSCs and indicates that JAK2V617F reduces self-renewal of individual HSCs but leaves progenitor expansion intact. This conclusion is supported by paired daughter cell analyses, which indicate that JAK2-mutant HSCs more often give rise to two differentiated daughter cells. Together these data suggest that acquisition of JAK2V617F alone is insufficient for clonal expansion and disease progression and causes eventual HSC exhaustion. Moreover, our results show that clonal expansion of progenitor cells provides a window in which collaborating mutations can accumulate to drive disease progression. Characterizing the mechanism(s) of JAK2V617F subclinical clonal expansions and the transition to overt MPNs will illuminate the earliest stages of tumor establishment and subclone competition, fundamentally shifting the way we treat and manage cancers

    Latent regulatory potential of human-specific repetitive elements

    Get PDF
    At least half of the human genome is derived from repetitive elements, which are often lineage specific and silenced by a variety of genetic and epigenetic mechanisms. Using a transchromosomic mouse strain that transmits an almost complete single copy of human chromosome 21 via the female germline, we show that a heterologous regulatory environment can transcriptionally activate transposon-derived human regulatory regions. In the mouse nucleus, hundreds of locations on human chromosome 21 newly associate with activating histone modifications in both somatic and germline tissues, and influence the gene expression of nearby transcripts. These regions are enriched with primate and human lineage-specific transposable elements, and their activation corresponds to changes in DNA methylation at CpG dinucleotides. This study reveals the latent regulatory potential of the repetitive human genome and illustrates the species specificity of mechanisms that control it

    Global reorganization of the nuclear landscape in senescent cells.

    Get PDF
    Cellular senescence has been implicated in tumor suppression, development, and aging and is accompanied by large-scale chromatin rearrangements, forming senescence-associated heterochromatic foci (SAHF). However, how the chromatin is reorganized during SAHF formation is poorly understood. Furthermore, heterochromatin formation in senescence appears to contrast with loss of heterochromatin in Hutchinson-Gilford progeria. We mapped architectural changes in genome organization in cellular senescence using Hi-C. Unexpectedly, we find a dramatic sequence- and lamin-dependent loss of local interactions in heterochromatin. This change in local connectivity resolves the paradox of opposing chromatin changes in senescence and progeria. In addition, we observe a senescence-specific spatial clustering of heterochromatic regions, suggesting a unique second step required for SAHF formation. Comparison of embryonic stem cells (ESCs), somatic cells, and senescent cells shows a unidirectional loss in local chromatin connectivity, suggesting that senescence is an endpoint of the continuous nuclear remodelling process during differentiation

    Multi-layered spatial transcriptomics identify secretory factors promoting human hematopoietic stem cell development

    Get PDF
    Hematopoietic stem cells (HSCs) first emerge in the embryonic aorta-gonad-mesonephros (AGM) region. Studies of model organisms defined intersecting signaling pathways that converge to promote HSC emergence predominantly in the ventral domain of the dorsal aorta. Much less is known about mechanisms driving HSC development in humans. Here, to identify secreted signals underlying human HSC development, we combined spatial transcriptomics analysis of dorsoventral polarized signaling in the aorta with gene expression profiling of sorted cell populations and single cells. Our analysis revealed a subset of aortic endothelial cells with a downregulated arterial signature and a predicted lineage relationship with the emerging HSC/progenitor population. Analysis of the ventrally polarized molecular landscape identified endothelin 1 as an important secreted regulator of human HSC development. The obtained gene expression datasets will inform future studies on mechanisms of HSC development in vivo and on generation of clinically relevant HSCs in vitro

    Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53

    Get PDF
    This work was supported by the University of Cambridge; Cancer Research UK (C14303/A17197); Hutchison Whampoa. In addition, MasasN and TO were supported by the Human Frontier Science Program (RGY0078/2010); HK was supported by MEXT KAKENHI (Grant Numbers 25116005 and 26291071); KT was supported by the Japan Society for the Promotion of Science (24–8563).The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical ‘acute’ p53 binding profile, ‘chronic’ p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory ‘p53 hubs’ where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the ‘lipogenic phenotype’, a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.Publisher PDFPeer reviewe

    Phenotype specific analyses reveal distinct regulatory mechanism for chronically activated p53.

    Get PDF
    The downstream functions of the DNA binding tumor suppressor p53 vary depending on the cellular context, and persistent p53 activation has recently been implicated in tumor suppression and senescence. However, genome-wide information about p53-target gene regulation has been derived mostly from acute genotoxic conditions. Using ChIP-seq and expression data, we have found distinct p53 binding profiles between acutely activated (through DNA damage) and chronically activated (in senescent or pro-apoptotic conditions) p53. Compared to the classical 'acute' p53 binding profile, 'chronic' p53 peaks were closely associated with CpG-islands. Furthermore, the chronic CpG-island binding of p53 conferred distinct expression patterns between senescent and pro-apoptotic conditions. Using the p53 targets seen in the chronic conditions together with external high-throughput datasets, we have built p53 networks that revealed extensive self-regulatory 'p53 hubs' where p53 and many p53 targets can physically interact with each other. Integrating these results with public clinical datasets identified the cancer-associated lipogenic enzyme, SCD, which we found to be directly repressed by p53 through the CpG-island promoter, providing a mechanistic link between p53 and the 'lipogenic phenotype', a hallmark of cancer. Our data reveal distinct phenotype associations of chronic p53 targets that underlie specific gene regulatory mechanisms.This work was supported by the University of Cambridge; Cancer Research UK (C14303/A17197); Hutchison Whampoa. In addition, MasasN and TO were supported by the Human Frontier Science Program (RGY0078/2010); HK was supported by MEXT KAKENHI (Grant Numbers 25116005 and 26291071); KT was supported by the Japan Society for the Promotion of Science (24–8563).This is the final version of the article. It first appeared at http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.100505
    • …
    corecore