31 research outputs found
Adenosine has two faces: Regionally dichotomous adenosine tone in a model of epilepsy with comorbid sleep disorders
Objective: Adenosine participates in maintaining the excitatory/inhibitory balance in neuronal circuits. Studies indicate that adenosine levels in the cortex and hippocampus increase and exert sleep pressure in sleep-deprived and control animals, whereas in epilepsy reduced adenosine tone promotes hyperexcitability. To date, the role of adenosine in pathological conditions that result in both seizures and sleep disorders is unknown. Here, we determined adenosine tone in sleep and seizure regulating brain regions of Kv1.1 knockout (KO) mice, a model of temporal epilepsy with comorbid sleep disorders.
Methods: 1) Reverse phase-high performance liquid chromatography (RP-HPLC) was performed on brain tissue to determine levels of adenosine and adenine nucleotides. 2) Multi-electrode array extracellular electrophysiology was used to determine adenosine tone in the hippocampal CA1 region and the lateral hypothalamus (LH).
Results: RP-HPLC indicated a non-significant decrease in adenosine (~50%, p = 0.23) in whole brain homogenates of KO mice. Regional examination of relative levels of adenine nucleotides indicated decreased ATP and increased AMP in the cortex and hippocampus and increased adenosine in cortical tissue. Using electrophysiological and pharmacological techniques, estimated adenosine levels were ~35% lower in the KO hippocampal CA1 region, and 1–2 fold higher in the KO LH. Moreover, the increased adenosine in KO LH contributed to lower spontaneous firing rates of putative wake-promoting orexin/hypocretin neurons.
Interpretation: This is the first study to demonstrate a direct correlation of regionally distinct dichotomous adenosine levels in a single model with both epilepsy and comorbid sleep disorders. The weaker inhibitory tone in the dorsal hippocampus is consistent with lower seizure threshold, whereas increased adenosine in the LH is consistent with chronic partial sleep deprivation. This work furthers our understanding of how adenosine may contribute to pathological conditions that underlie sleep disorders within the epileptic brain
Functional MRI Correlates of Carbon Dioxide Chemosensing in Persons With Epilepsy
ObjectivesSudden unexpected death in epilepsy (SUDEP) is a catastrophic epilepsy outcome for which there are no reliable premortem imaging biomarkers of risk. Percival respiratory depression is seen in monitored SUDEP and near SUDEP cases, and abnormal chemosensing of raised blood carbon dioxide (CO2) is thought to contribute. Damage to brainstem respiratory control and chemosensing structures has been demonstrated in structural imaging and neuropathological studies of SUDEP. We hypothesized that functional MRI (fMRI) correlates of abnormal chemosensing are detectable in brainstems of persons with epilepsy (PWE) and are different from healthy controls (HC).MethodsWe analyzed fMRI BOLD activation and brain connectivity in 10 PWE and 10 age- and sex-matched HCs during precisely metered iso-oxic, hypercapnic breathing challenges. Segmented brainstem responses were of particular interest, along with characterization of functional connectivity metrics between these structures. Regional BOLD activations during hypercapnic challenges were convolved with hemodynamic responses, and the resulting activation maps were passed on to group-level analyses. For the functional connectivity analysis, significant clusters from BOLD results were used as seeds. Each individual seed time-series activation map was extracted for bivariate correlation coefficient analyses to study changes in brain connectivity between PWE and HCs.Results(1) Greater brainstem BOLD activations in PWE were observed compared to HC during hypercapnic challenges in several structures with respiratory/chemosensing properties. Group comparison between PWE vs. HC showed significantly greater activation in the dorsal raphe among PWE (p < 0.05) compared to HCs. (2) PWE had significantly greater seed-seed connectivity and recruited more structures during hypercapnia compared to HC.SignificanceThe results of this study show that BOLD responses to hypercapnia in human brainstem are detectable and different in PWE compared to HC. Increased dorsal raphe BOLD activation in PWE and increased seed-seed connectivity between brainstem and adjacent subcortical areas may indicate abnormal chemosensing in these individuals. Imaging investigation of brainstem respiratory centers involved in respiratory regulation in PWE is an important step toward identifying suspected dysfunction of brainstem breathing control that culminates in SUDEP and deserve further study as potential imaging SUDEP biomarkers
Recommended from our members
Ketone Bodies as Anti-Seizure Agents.
There is growing evidence that ketone bodies (KB)-derived from fatty acid oxidation and produced during fasting or consumption of high-fat diets-can exert broad neuroprotective effects. With respect to epilepsy, KB (such as β-hydroxybutyrate or BHB, acetoacetate and acetone) have been shown to block acutely induced and spontaneous recurrent seizures in various animal models. Although the mechanisms underlying the anti-seizure effects of KB have not been fully elucidated, recent experimental studies have invoked ketone-mediated effects on both inhibitory (e.g., GABAergic, purinergic and ATP-sensitive potassium channels) and excitatory (e.g., vesicular glutamate transporters) neurotransmission, as well as mitochondrial targets (e.g., respiratory chain and mitochondrial permeability transition). Moreover, BHB appears to exert both epigenetic (i.e., inhibition of histone deacetylases or HDACs) and anti-inflammatory (i.e., peripheral modulation of hydroxycarboxylic acid receptor and inhibition of the NOD-like receptor protein 3 or NRLP3 inflammasome) activity. While the latter two effects of BHB have yet to be directly linked to ictogenesis and/or epileptogenesis, parallel lines of evidence indicate that HDAC inhibition and a reduction in neuroinflammation alone or collectively can block seizure activity. Nevertheless, the notion that KB are themselves anti-seizure agents requires clinical validation, as prior studies have not revealed a clear correlation between blood ketone levels and seizure control. Notwithstanding this limitation, there is growing evidence that KB are more than just cellular fuels, and can exert profound biochemical, cellular and epigenetic changes favoring an overall attenuation in brain network excitability
Ketone Bodies as Anti-Seizure Agents.
There is growing evidence that ketone bodies (KB)-derived from fatty acid oxidation and produced during fasting or consumption of high-fat diets-can exert broad neuroprotective effects. With respect to epilepsy, KB (such as β-hydroxybutyrate or BHB, acetoacetate and acetone) have been shown to block acutely induced and spontaneous recurrent seizures in various animal models. Although the mechanisms underlying the anti-seizure effects of KB have not been fully elucidated, recent experimental studies have invoked ketone-mediated effects on both inhibitory (e.g., GABAergic, purinergic and ATP-sensitive potassium channels) and excitatory (e.g., vesicular glutamate transporters) neurotransmission, as well as mitochondrial targets (e.g., respiratory chain and mitochondrial permeability transition). Moreover, BHB appears to exert both epigenetic (i.e., inhibition of histone deacetylases or HDACs) and anti-inflammatory (i.e., peripheral modulation of hydroxycarboxylic acid receptor and inhibition of the NOD-like receptor protein 3 or NRLP3 inflammasome) activity. While the latter two effects of BHB have yet to be directly linked to ictogenesis and/or epileptogenesis, parallel lines of evidence indicate that HDAC inhibition and a reduction in neuroinflammation alone or collectively can block seizure activity. Nevertheless, the notion that KB are themselves anti-seizure agents requires clinical validation, as prior studies have not revealed a clear correlation between blood ketone levels and seizure control. Notwithstanding this limitation, there is growing evidence that KB are more than just cellular fuels, and can exert profound biochemical, cellular and epigenetic changes favoring an overall attenuation in brain network excitability
Recommended from our members
Ketogenic diet treatment increases longevity in Kcna1-null mice, a model of sudden unexpected death in epilepsy.
Individuals with poorly controlled epilepsy have a higher risk for sudden unexpected death in epilepsy (SUDEP). With approximately one third of people with epilepsy not achieving adequate seizure control with current antiseizure drugs, there is a critical need to identify treatments that reduce risk factors for SUDEP. The Kcna1-null mutant mouse models risk factors and terminal events associated with SUDEP. In the current study, we demonstrate the progressive nature of epilepsy and sudden death in this model (mean age of mortality (± SEM), postnatal day [P] 42.8 ± 1.3) and tested the hypothesis that long-term treatment with the ketogenic diet (KD) will prolong the life of Kcna1-null mice. We found that the KD postpones disease progression by delaying the onset of severe seizures and increases the lifespan of these mutant mice by 47%. Future studies are needed to determine the mechanisms underlying the KD effects on longevity
Ketogenic diet treatment increases longevity in Kcna1-null mice, a model of sudden unexpected death in epilepsy.
Individuals with poorly controlled epilepsy have a higher risk for sudden unexpected death in epilepsy (SUDEP). With approximately one third of people with epilepsy not achieving adequate seizure control with current antiseizure drugs, there is a critical need to identify treatments that reduce risk factors for SUDEP. The Kcna1-null mutant mouse models risk factors and terminal events associated with SUDEP. In the current study, we demonstrate the progressive nature of epilepsy and sudden death in this model (mean age of mortality (± SEM), postnatal day [P] 42.8 ± 1.3) and tested the hypothesis that long-term treatment with the ketogenic diet (KD) will prolong the life of Kcna1-null mice. We found that the KD postpones disease progression by delaying the onset of severe seizures and increases the lifespan of these mutant mice by 47%. Future studies are needed to determine the mechanisms underlying the KD effects on longevity
Do ketone bodies mediate the anti-seizure effects of the ketogenic diet?
Although the mechanisms underlying the anti-seizure effects of the high-fat ketogenic diet (KD) remain unclear, a long-standing question has been whether ketone bodies (i.e., β-hydroxybutyrate, acetoacetate and acetone), either alone or in combination, contribute mechanistically. The traditional belief has been that while ketone bodies reflect enhanced fatty acid oxidation and a general shift toward intermediary metabolism, they are not likely to be the key mediators of the KD's clinical effects, as blood levels of β-hydroxybutyrate do not correlate consistently with improved seizure control. Against this unresolved backdrop, new data support ketone bodies as having anti-seizure actions. Specifically, β-hydroxybutyrate has been shown to interact with multiple novel molecular targets such as histone deacetylases, hydroxycarboxylic acid receptors on immune cells, and the NLRP3 inflammasome. Clearly, as a diet-based therapy is expected to render a broad array of biochemical, molecular, and cellular changes, no single mechanism can explain how the KD works. Specific metabolic substrates or enzymes are only a few of many important factors influenced by the KD that can collectively influence brain hyperexcitability and hypersynchrony. This review summarizes recent novel experimental findings supporting the anti-seizure and neuroprotective properties of ketone bodies
Changes in lipid profiles of epileptic mouse mode
Introduction Approximately 1% of the world’s population is impacted by epilepsy, a chronic neurological disorder characterized by seizures. One-third of epileptic patients are resistant to AEDs, or have medically refractory epilepsy (MRE). One non-invasive treatment that exists for MRE includes the ketogenic diet (KD), a high-fat, low-carbohydrate diet. Despite the KD’s success in seizure attenuation, it has a few risks and its mechanisms remain poorly understood. The KD has been shown to improve metabolism and mitochondrial function in epileptic phenotypes. Potassium channels have implications in epileptic conditions as they have dual roles as metabolic sensors and control neuronal excitation.
Objectives The goal of this study was to explore changes in the lipidome in hippocampal and cortical tissue from Kv1.1-KO model of epilepsy.
Methods FT-ICR/MS analysis was utilized to examine nonpolar metabolome of cortical and hippocampal tissue isolated from a Kv1.1 channel knockout mouse model of epilepsy (n = 5) and wild-type mice (n = 5).
Results Distinct metabolic profiles were observed, significant (p \u3c 0.05) features in hippocampus often being upregulated (FC ≥ 2) and the cortex being downregulated (FC ≤ 0.5). Pathway enrichment analysis shows lipid biosynthesis was affected. Partition ratio analysis revealed that the ratio of most metabolites tended to be increased in Kv1.1−/−. Metabolites in hippocampal tissue were commonly upregulated, suggesting seizure initiation in the hippocampus. Aberrant mitochondrial function is implicated by the upregulation of cardiolipin, a common component in the mitochondrial membrane.
Conclusion Generally, our study finds that the lipidome is changed in the hippocampus and cortex in response to Kv1.1-KO indicating changes in membrane structural integrity and synaptic transmissio
Dietary and Metabolic Approaches for Treating Autism Spectrum Disorders, Affective Disorders and Cognitive Impairment Comorbid with Epilepsy: A Review of Clinical and Preclinical Evidence
Epilepsy often occurs with other neurological disorders, such as autism, affective disorders, and cognitive impairment. Research indicates that many neurological disorders share a common pathophysiology of dysfunctional energy metabolism, neuroinflammation, oxidative stress, and gut dysbiosis. The past decade has witnessed a growing interest in the use of metabolic therapies for these disorders with or without the context of epilepsy. Over one hundred years ago, the high-fat, low-carbohydrate ketogenic diet (KD) was formulated as a treatment for epilepsy. For those who cannot tolerate the KD, other diets have been developed to provide similar seizure control, presumably through similar mechanisms. These include, but are not limited to, the medium-chain triglyceride diet, low glycemic index diet, and calorie restriction. In addition, dietary supplementation with ketone bodies, polyunsaturated fatty acids, or triheptanoin may also be beneficial. The proposed mechanisms through which these diets and supplements work to reduce neuronal hyperexcitability involve normalization of aberrant energy metabolism, dampening of inflammation, promotion of endogenous antioxidants, and reduction of gut dysbiosis. This raises the possibility that these dietary and metabolic therapies may not only exert anti-seizure effects, but also reduce comorbid disorders in people with epilepsy. Here, we explore this possibility and review the clinical and preclinical evidence where available