291 research outputs found

    Dynamical Image Charge Effect in Molecular Tunnel Junctions: Beyond Energy Level Alignment

    Get PDF
    When an electron tunnels between two metal contacts it temporarily induces an image charge (IC) in the electrodes which acts back on the tunneling electron. It is usually assumed that the IC forms instantaneously such that a static model for the image potential applies. Here we investigate how the finite IC formation time affects charge transport through a molecule suspended between two electrodes. For a single level model, an analytical treatment shows that the conductance is suppressed by a factor Z2Z^2 (compared to the static IC approximation) where ZZ is the quasiparticle renormalization factor. We show that ZZ can be expressed either in terms of the plasma frequency of the electrode or as the overlap between the ground states of the electrode with and without an electron on the molecule. First-principles GW calculations for benzene-diamine connected to gold electrodes show that the dynamical corrections can reduce the conductance by more than a factor of two.Comment: 5 pages, 3 figure

    Renormalization of Molecular Quasiparticle Levels at Metal-Molecule Interfaces: Trends Across Binding Regimes

    Get PDF
    When an electron or a hole is added into an orbital of an adsorbed molecule the substrate electrons will rearrange in order to screen the added charge. This results in a reduction of the electron addition/removal energies as compared to the free molecule case. In this work we use a simple model to illustrate the universal trends of this renormalization mechanism as a function of the microscopic key parameters. Insight of both fundamental and practical importance is obtained by comparing GW quasiparticle energies with Hartree-Fock and Kohn-Sham calculations. We identify two different polarization mechanisms: (i) polarization of the metal (image charge formation) and (ii) polarization of the molecule via charge transfer across the interface. The importance of (i) and (ii) is found to increase with the metal density of states at the Fermi level and metal-molecule coupling strength, respectively.Comment: 4 pages, 3 figure

    Extending the random-phase approximation for electronic correlation energies: The renormalized adiabatic local density approximation

    Get PDF
    The adiabatic connection fluctuation-dissipation theorem with the random phase approximation (RPA) has recently been applied with success to obtain correlation energies of a variety of chemical and solid state systems. The main merit of this approach is the improved description of dispersive forces while chemical bond strengths and absolute correlation energies are systematically underestimated. In this work we extend the RPA by including a parameter-free renormalized version of the adiabatic local density (ALDA) exchange-correlation kernel. The renormalization consists of a (local) truncation of the ALDA kernel for wave vectors q>2kFq>2k_F, which is found to yield excellent results for the homogeneous electron gas. In addition, the kernel significantly improves both the absolute correlation energies and atomization energies of small molecules over RPA and ALDA. The renormalization can be straightforwardly applied to other adiabatic local kernels.Comment: 5 page

    Static correlation beyond the random phase approximation: Dissociating H2 with the Bethe-Salpeter equation and time-dependent GW

    Get PDF
    We investigate various approximations to the correlation energy of a H2_2 molecule in the dissociation limit, where the ground state is poorly described by a single Slater determinant. The correlation energies are derived from the density response function and it is shown that response functions derived from Hedin's equations (Random Phase Approximation (RPA), Time-dependent Hartree-Fock (TDHF), Bethe-Salpeter equation (BSE), and Time-Dependent GW (TDGW)) all reproduce the correct dissociation limit. We also show that the BSE improves the correlation energies obtained within RPA and TDHF significantly for intermediate binding distances. A Hubbard model for the dimer allow us to obtain exact analytical results for the various approximations, which is readily compared with the exact diagonalization of the model. Moreover, the model is shown to reproduce all the qualitative results from the \textit{ab initio} calculations and confirms that BSE greatly improves the RPA and TDHF results despite the fact that the BSE excitation spectrum breaks down in the dissociation limit. In contrast, Second Order Screened Exchange (SOSEX) gives a poor description of the dissociation limit, which can be attributed to the fact that it cannot be derived from an irreducible response function

    Electron-phonon interaction and transport properties of metallic bulk and monolayer transition metal dichalcogenide TaS2_2

    Get PDF
    Transition metal dichalcogenides have recently emerged as promising two-dimensional materials with intriguing electronic properties. Existing calculations of intrinsic phonon-limited electronic transport so far have concentrated on the semicondcucting members of this family. In this paper we extend these studies by investigating the influence of electron-phonon coupling on the electronic transport properties and band renormalization of prototype inherent metallic bulk and monolayer TaS2_2. Based on density functional perturbation theory and semi-classical Boltzmann transport calculations, promising room temperature mobilities and sheet conductances are found, which can compete with other established 2D materials, leaving TaS2_2 as promising material candidate for transparent conductors or as atomically thin interconnects. Throughout the paper, the electronic and transport properties of TaS2_2 are compared to those of its isoelectronic counterpart TaSe2_2 and additional informations to the latter are given. We furthermore comment on the conventional su- perconductivity in TaS2_2, where no phonon-mediated enhancement of TC in the monolayer compared to the bulk state was found.Comment: accepted in IOPscience 2D Materials, supplemental material is available on the publishers pag

    Computational 2D Materials Database: Electronic Structure of Transition-Metal Dichalcogenides and Oxides

    Get PDF
    We present a comprehensive first-principles study of the electronic structure of 51 semiconducting monolayer transition metal dichalcogenides and -oxides in the 2H and 1T hexagonal phases. The quasiparticle (QP) band structures with spin-orbit coupling are calculated in the G0W0G_0W_0 approximation and comparison is made with different density functional theory (DFT) descriptions. Pitfalls related to the convergence of GWGW calculations for 2D materials are discussed together with possible solutions. The monolayer band edge positions relative to vacuum are used to estimate the band alignment at various heterostructure interfaces. The sensitivity of the band structures to the in-plane lattice constant is analysed and rationalized in terms of the electronic structure. Finally, the qq-dependent dielectric functions and effective electron/hole masses are obtained from the QP band structure and used as input to a 2D hydrogenic model to estimate exciton binding energies. Throughout the paper we focus on trends and correlations in the electronic structure rather than detailed analysis of specific materials. All the computed data is available in an open database.Comment: 24 pages, 13 figures and 5 tables. J. Phys. Chem. C, Article ASAP, Publication Date (Web): April 30, 201

    Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids-the renormalized ALDA and electron gas kernels

    Get PDF
    We present calculations of the correlation energies of crystalline solids and isolated systems within the adiabatic-connection fluctuation-dissipation formulation of density-functional theory. We perform a quantitative comparison of a set of model exchange-correlation kernels originally derived for the homogeneous electron gas (HEG), including the recently-introduced renormalized adiabatic local-density approximation (rALDA) and also kernels which (a) satisfy known exact limits of the HEG, (b) carry a frequency dependence or (c) display a 1/k2k^2 divergence for small wavevectors. After generalizing the kernels to inhomogeneous systems through a reciprocal-space averaging procedure, we calculate the lattice constants and bulk moduli of a test set of 10 solids consisting of tetrahedrally-bonded semiconductors (C, Si, SiC), ionic compounds (MgO, LiCl, LiF) and metals (Al, Na, Cu, Pd). We also consider the atomization energy of the H2_2 molecule. We compare the results calculated with different kernels to those obtained from the random-phase approximation (RPA) and to experimental measurements. We demonstrate that the model kernels correct the RPA's tendency to overestimate the magnitude of the correlation energy whilst maintaining a high-accuracy description of structural properties.Comment: 41 pages, 7 figure

    Excitons in van der Waals heterostructures: The important role of dielectric screening

    Get PDF
    The existence of strongly bound excitons is one of the hallmarks of the newly discovered atomically thin semi-conductors. While it is understood that the large binding energy is mainly due to the weak dielectric screening in two dimensions (2D), a systematic investigation of the role of screening on 2D excitons is still lacking. Here we provide a critical assessment of a widely used 2D hydrogenic exciton model which assumes a dielectric function of the form {\epsilon}(q) = 1 + 2{\pi}{\alpha}q, and we develop a quasi-2D model with a much broader applicability. Within the quasi-2D picture, electrons and holes are described as in-plane point charges with a finite extension in the perpendicular direction and their interaction is screened by a dielectric function with a non-linear q-dependence which is computed ab-initio. The screened interaction is used in a generalized Mott-Wannier model to calculate exciton binding energies in both isolated and supported 2D materials. For isolated 2D materials, the quasi-2D treatment yields results almost identical to those of the strict 2D model and both are in good agreement with ab-initio many-body calculations. On the other hand, for more complex structures such as supported layers or layers embedded in a van der Waals heterostructure, the size of the exciton in reciprocal space extends well beyond the linear regime of the dielectric function and a quasi-2D description has to replace the 2D one. Our methodology has the merit of providing a seamless connection between the strict 2D limit of isolated monolayer materials and the more bulk-like screening characteristics of supported 2D materials or van der Waals heterostructures.Comment: 14 pages, 13 figure

    Non-equilibrium GW approach to quantum transport in nano-scale contacts

    Get PDF
    Correlation effects within the GW approximation have been incorporated into the Keldysh non-equilibrium transport formalism. We show that GW describes the Kondo effect and the zero-temperature transport properties of the Anderson model fairly well. Combining the GW scheme with density functional theory and a Wannier function basis set, we illustrate the impact of correlations by computing the I-V characteristics of a hydrogen molecule between two Pt chains. Our results indicate that self-consistency is fundamental for the calculated currents, but that it tends to wash out satellite structures in the spectral function.Comment: 5 pages, 4 figure

    Quantifying Transition Voltage Spectroscopy of Molecular Junctions

    Full text link
    Transition voltage spectroscopy (TVS) has recently been introduced as a spectroscopic tool for molecular junctions where it offers the possibility to probe molecular level energies at relatively low bias voltages. In this work we perform extensive ab-initio calculations of the non-linear current voltage relations for a broad class of single-molecule transport junctions in order to assess the applicability and limitations of TVS. We find, that in order to fully utilize TVS as a quantitative spectroscopic tool, it is important to consider asymmetries in the coupling of the molecule to the two electrodes. When this is taken properly into account, the relation between the transition voltage and the energy of the molecular orbital closest to the Fermi level closely follows the trend expected from a simple, analytical model.Comment: 5 pages, 4 figures. To appear in PR
    • …
    corecore