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Adiabatic-connection fluctuation-dissipation DFT for the structural
properties of solids—The renormalized ALDA and electron gas kernels

Christopher E. Patricka) and Kristian S. Thygesenb)

Center for Atomic-Scale Materials Design (CAMD), Department of Physics, Technical University of Denmark,
DK—2800 Kongens Lyngby, Denmark

(Received 14 November 2014; accepted 16 December 2014; published online 29 April 2015)

We present calculations of the correlation energies of crystalline solids and isolated systems within
the adiabatic-connection fluctuation-dissipation formulation of density-functional theory. We perform
a quantitative comparison of a set of model exchange-correlation kernels originally derived for
the homogeneous electron gas (HEG), including the recently introduced renormalized adiabatic
local-density approximation (rALDA) and also kernels which (a) satisfy known exact limits of the
HEG, (b) carry a frequency dependence, or (c) display a 1/k2 divergence for small wavevectors. After
generalizing the kernels to inhomogeneous systems through a reciprocal-space averaging procedure,
we calculate the lattice constants and bulk moduli of a test set of 10 solids consisting of tetrahedrally
bonded semiconductors (C, Si, SiC), ionic compounds (MgO, LiCl, LiF), and metals (Al, Na, Cu, Pd).
We also consider the atomization energy of the H2 molecule. We compare the results calculated with
different kernels to those obtained from the random-phase approximation (RPA) and to experimental
measurements. We demonstrate that the model kernels correct the RPA’s tendency to overestimate
the magnitude of the correlation energy whilst maintaining a high-accuracy description of structural
properties. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4919236]

I. INTRODUCTION

The remarkable rise of density-functional theory1 (DFT)
in the last few decades owes much to the efficient treatment
of exchange and correlation within the local-density approx-
imation (LDA).2 However, known deficiencies in the LDA’s
description of certain systems have led to the development
of a hierarchy of exchange-correlation (XC) functionals of
varying computational expense.3 At the high-complexity end
of this spectrum of functionals lies the adiabatic connection-
fluctuation dissipation formulation of DFT (ACFD-DFT),4,5

which in its simplest form corresponds to the random-phase
approximation (RPA) correlation energy.6 “Beyond-RPA”
methods strive for an even higher level of accuracy and form
an important and fast-developing field of research.6–12

ACFD-DFT provides a natural path for the improvement
of the RPA via the introduction of an XC kernel f xc, an ubiq-
uitous quantity in time-dependent DFT (TD-DFT).13,14 The
homogeneous electron gas (HEG) has become a key system for
the development and testing of new kernels through the ACFD-
DFT calculation of correlation energies.15–18 Jellium slabs
also form important test systems, through the ACFD-DFT
calculation of their surface energies,19,20 inter-slab interaction
energies,21–23 and as benchmarks for widely used semilocal
XC functionals.24,25 However, the last few years have seen
the application of the ACFD-DFT formalism to calculate the
correlation energies of atoms, molecules, and solids, with
promising results.26–29

a)chripa@fysik.dtu.dk
b)thygesen@fysik.dtu.dk

One such example is the “renormalized kernel approach,”
which was introduced based on a model XC-kernel named the
renormalized adiabatic LDA (rALDA).30,31 The rALDA ex-
ploits the accurate reciprocal-space description of HEG corre-
lation provided by the adiabatic LDA (ALDA) in the long-
wavelength limit, whilst correcting the ALDA’s unphysical
behavior at short wavelengths. The rALDA and its generalized-
gradient analogue (rAPBE) have been shown to yield highly
accurate atomization and cohesive energies of molecules and
solids.30–32

It is interesting to place the rALDA into the context of
other HEG kernels. Many theoretical studies have explored the
properties of the exact XC-kernel and derived certain limits
which are not necessarily obeyed by the rALDA.33–35 Simi-
larly, the rALDA is static, and apart from studies of the HEG,15

there is little known about dynamical effects on ACFD-DFT
correlation energies. Furthermore, the XC-kernel of an insu-
lator is known to behave qualitatively differently to a metallic
system like the HEG,36 with the XC-kernel of an insulator
famously diverging ∝ 1/k2 in the limit of small wavevectors
k.37 In this respect, it is important to test the validity of apply-
ing a model HEG kernel to non-metallic systems.

This work explores the above aspects through a quan-
titative comparison of model HEG XC-kernels. Within our
sample of XC-kernels, we include the rALDA,30 and also a
kernel which satisfies exact limits of the HEG,17 a simple
dynamical kernel,16 and a kernel which has a divergence ∝
1/k2 when describing an insulator.38 For each XC-kernel, we
use ACFD-DFT to calculate the correlation energy of a test set
of 10 crystalline solids and evaluate the lattice constant and
bulk modulus, which we then compare to calculations using

0021-9606/2015/143(10)/102802/16/$30.00 143, 102802-1 © 2015 AIP Publishing LLC
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semilocal functionals and the RPA, and also to experiment.
We also provide a demonstrative calculation of the atomization
energy of the hydrogen molecule to highlight the importance
of spin-polarization. We find that all of the model XC-kernels
greatly improve the magnitude of the RPA correlation energy
whilst providing a highly accurate description of structural
properties.

Our study is organized as follows. In Sec. II, we review
ACFD-DFT and the role played by the XC-kernel. In partic-
ular, we describe the expected behavior of the XC-kernel for
the HEG at certain limits (Sec. II C), introduce our chosen
set of model kernels (Sec. II D), and apply them to the HEG
(Sec. II E). For inhomogeneous systems, we require a scheme
to generalize HEG kernels for a varying density; in Sec. II G,
we discuss possible schemes and justify the choice made in this
work. Section III contains the results of our study, in which
we discuss the calculated lattice constants and bulk moduli,
absolute correlation energies, and the H2 molecule. Finally in
Sec. IV, we summarize our results and offer our conclusions.

II. THEORY

A. Correlation energies in the ACFD-DFT framework

Here, we summarize the essential concepts of ACFD-
DFT. Full derivations may be found in original articles4,5 or
recent reviews, e.g., Refs. 6 and 39.

In ACFD-DFT, a system of fully interacting electrons
is described by a coupling-constant dependent Hamiltonian
H(λ). The coupling constant λ takes values between 0 and 1
and defines an effective interaction between electrons as λvc,
where vc is the Coulomb interaction. H(λ = 1) corresponds
to the exact Hamiltonian of the fully interacting system. In
addition to the effective Coulomb interaction, H(λ) contains a
λ-dependent single-particle potential vλext, constructed in such
a way that the ground-state solution of H(λ) has exactly the
same electronic density as the ground-state solution of the
fully interacting (λ = 1) Hamiltonian. The fixed-density path
connecting λ = 0 and 1 defines the “adiabatic connection.”
Since H(λ = 0) describes a system of non-interacting electrons
with a fully interacting density, vλ=0

ext is readily identified as the
Kohn-Sham potential from DFT.1,2

Invoking the Hellmann-Feynman theorem, integrating
with respect to λ along the adiabatic connection, and compar-
ing to standard DFT1 yields an expression for the XC energy
in terms of the operator describing density fluctuations. The
fluctuation-dissipation theorem40 provides the link between
this operator and the frequency integral of a response function
χλ. For non-interacting electrons, χλ=0 ≡ χKS, the Kohn-Sham
response function of time-dependent DFT.13,14 The XC-energy
is then written as the sum of an “exact” exchange contribution
Ex and the correlation energy Ec, where the latter is given by
(in Hartree units)

Ec = −
1

2π


q

 1

0
dλ

 ∞

0
ds

×Tr

vc(q)(χλ(q, is) − χKS(q, is))


. (1)

Equation (1) has been written in a plane-wave basis so that the
quantities on the right-hand side are matrices in the reciprocal

lattice vectors G and G′, and the wavevectors q belong to the
first Brillouin zone. The Coulomb interaction is diagonal in
a plane-wave representation with elements 4π/|q +G|2, and
s is a real number corresponding to an imaginary frequency,
ω = is.

The link between the interacting and non-interacting re-
sponse functions is supplied by linear-response theory,14 which
describes the behavior of density n in the presence of a small
perturbation,

δn(q,ω) = χλ(q,ω)δvλext(q,ω). (2)

The fact that χλ yields the exact density response at all values
of λ allows the link to be made to χKS through the following
integral equation:

χλ(q,ω) = χKS(q,ω) + χKS(q,ω) f λHxc(q,ω)χλ(q,ω), (3)

where the Hartree-XC kernel f λHxc has been introduced as

f λHxc(q,ω) = λvc(q) + f λxc(q,ω). (4)

The XC-kernel f λxc describes the change in the XC-potential
vλxc upon perturbing the density, which is a fully nonlocal
quantity in time and space,14

f λxc(r,r′, t − t ′) = δvλxc(r, t)
δn(r′, t ′) . (5)

By assuming approximate forms for χKS and f λxc, one can use
Eq. (3) to calculate χλ and thus evaluate the correlation energy
with Eq. (1).

B. ACFD-DFT in practice

In a plane-wave basis, the Kohn-Sham response function
has the form41

χGG′
KS (q, is) = 2

Ω


kνν′

( fνk − fν′k+q)

×
nνk,ν′k+q(G)n∗

νk,ν′k+q(G′)
is + ενk − εν′k+q

, (6)

where fνk and ενk represent the occupation factor and energy of
the Kohn-Sham state ψνk, while the pair densities nνk,ν′k+q(G)
are matrix elements of plane waves, ⟨ψνk|e−i(q+G)·r|ψν′k+q⟩.Ω is
the volume of the primitive unit cell, and the factor of 2 assumes
a spin-degenerate system. From Eqs. (1) and (6), the benefits
of the ACFD-DFT are not very obvious; to construct χKS, we
require ψ, which means solving the Kohn-Sham equations and
thus already obtaining the correlation energy. Furthermore, to
solve the integral equation (3), we require the XC-kernel f xc,
which arguably is even more complicated than the XC-potential
vxc due to its frequency dependence.

However, the attraction of ACFD-DFT is that even setting
f xc = 0 yields both a nonlocal description of exchange and a
nontrivial expression for the correlation energy, namely, that
obtained from the RPA,6

ERPA
c =

1
2π


q

 ∞

0
ds Tr [ln {1 − vc(q)χKS(q, is)}

+ vc(q)χKS(q, is)] . (7)
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The RPA has been applied across a wide range of physical sys-
tems42–49 and found to give a markedly improved description
of nonlocal correlation effects. Equation (7) is usually applied
as a post-processing step to a DFT calculation, analogous to
G0W0 corrections to band gaps.50,51

Based on the success of the RPA, it may be hoped that
the description of correlation might be further improved by
using more sophisticated approximations for f xc. While it
turns out that the ALDA offers little improvement,27 nonlocal,
dynamical, and/or energy-optimized approximations for f xc
have been found to correct deficiencies of the RPA when
calculating the correlation energy of the HEG.15–23

We note that a non-self-consistent application of the
ACFD-DFT formula might suffer from a dependence on vxc,
the exchange-correlation potential used to construct the or-
bitals forming χKS. In this respect, a self-consistent scheme
is attractive and the subject of current research.52–55 However,
here, we do not include any self-consistency and treat f xc
as a quantity to be optimized independent of the vxc used to
generate χKS.56

C. XC-kernels from the homogeneous electron gas

In the same way that the HEG is used to generate approx-
imate XC-potentials, it also forms a natural starting point for
approximate XC-kernels. Here, we review some properties of
the exact XC-kernel of the HEG.

1. Definitions

The analogue of Eq. (3) for the HEG is

χλ(k,ω) = χ0(k,ω) + χ0(k,ω) f HEG,λ
Hxc (k,ω)χλ(k,ω). (8)

All quantities appearing in this equation are scalars, with k
= |G + q|. χ0 is the Lindhard response function, with occupa-
tion numbers equal to 1 for plane-wave states below the Fermi
level and zero otherwise.57 As demonstrated in the appendix
of Ref. 58, in the case that Eq. (3) is applied to the HEG,
the Lindhard and Kohn-Sham response functions coincide, so
that the quantity f HEG,λ

Hxc appearing in Eq. (8) must also match
its counterpart f λHxc in Eq. (3). Therefore, the HEG forms a
rigorous test ground for model XC kernels.

For simplicity, we denote f HEG,λ=1
xc as f HEG

xc . The local
field factor G(k,ω) is related to f HEG

xc (k,ω) as f HEG
xc (k,ω)

= −vc(k) G(k,ω), so that Eq. (8) defines G in terms of the
response functions χλ=1 and χ0.34 A potential source of confu-
sion is that another field factor GI can be found in the literature
which has a different defining equation.18,34,59,60 For GI , the
Lindhard response function appearing in Eq. (8) is modified
such that the occupation numbers of each plane-wave state are
calculated using the many-body wavefunction of the fully in-
teracting system.59 Therefore, f HEG, I

xc is also a distinct quantity.
However, the kernels investigated in this work were derived
based on the equivalence of Eqs. (3) and (8) for the HEG,58 so
it is G which is of interest in the current work.

2. Exact limits

The local-field factor G (and thus f HEG
xc ) have been the

subject of many theoretical studies (cf. Sec. III C of Ref. 33),

and their behavior at certain limits is known exactly. First, in
the long wavelength (k → 0) and static (ω = 0) limit, the HEG
XC-kernel reduces to the ALDA,

f HEG
xc (k → 0,ω = 0) = f ALDA

xc ≡ −4πA
k2
F

, (9)

where

A =
1
4
−

k2
F

4π
d2(nεc)

dn2 . (10)

kF = (3π2n)1/3 is the Fermi wavevector for the HEG of density
n, and εc is the correlation energy per electron. The two terms
in Eq. (10) correspond to the exchange and correlation contri-
butions to the ALDA kernel. Equation (9) can be seen either
as a consequence of the compressibility sum rule33 or more
simply by noting that the ALDA should be exact in describing
the HEG response to a uniform, static field.16

Remaining in the static case but considering small wave-
lengths (k → ∞) yields34,61

f HEG
xc (k → ∞,ω = 0) = −4πB

k2 −
4πC
k2
F

, (11)

whilst in the long wavelength, high frequency limit (k = 0,
ω → ∞) f HEG

xc is given by35

f HEG
xc (k = 0,ω → ∞) = −4πD

k2
F

. (12)

Although we have not written it explicitly, A, B, C, and D
depend on the density of the HEG, or equivalently on the Fermi
wavevector or Wigner radius rs = (3/4πn)1/3. Practically A,
C, and D can be obtained from a parameterization of the
HEG correlation energy εc, while B additionally requires the
momentum distribution and on-top pair-distribution function
of the HEG.62 In this work, we use the parameterization of εc
and B from Refs. 63 and 64, respectively.

3. Intermediate k values

In addition to these limits, calculating the correlation en-
ergy from Eq. (1) requires an expression for f HEG

xc across all
k and ω. Reference 64 provided important insight into the
HEG XC-kernel with diffusion Monte Carlo calculations of
f HEG
xc (k,ω = 0) for a range of k vectors and densities. Interest-

ingly, one of the conclusions of the work was that in this static
limit and for k . 2kF, f HEG

xc could be well-approximated by
taking its k = 0 limiting form (i.e., the ALDA, Eq. (9)).

4. The large-k limit and the pair-distribution function

According to Eq. (11), the k → ∞,ω = 0 limit of f HEG
xc

is a constant, and thus G(k,ω = 0) diverges as k2. This prop-
erty appears to have alarming consequences for the pair-
distribution function: in Ref. 65, it is shown that a G(k) which
diverges for large k will yield a singular pair-distribution
function at the origin (see also Refs. 27 and 66). The crucial
point to note however is that the relationship in Ref. 65
assumes a frequency-independent G(k), which is not the same
as the frequency-dependent G(k,ω) evaluated atω = 0, which
Eq. (11) describes. This point is discussed further in Ref. 58.
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Nonetheless, a frequency-independent model kernel satis-
fying the exact HEG limits for small and large k at ω = 0
(e.g., the Corradini, del Sole, Onida, and Palummo (CDOP)
kernel17) will have a badly behaved pair-distribution function,
as demonstrated below and in Fig. 2 of Ref. 29. In this respect,
and given that the correlation energy is calculated as an integral
over frequency, a frequency-averaged G(k) may be a better
starting point for model kernels than G(k,ω = 0). Below, we
compare kernels which do or do not satisfy Eq. (11).

D. Model XC kernels

Having introduced the relevant quantities for the HEG,
we now describe the XC-kernels investigated in the current
work. The XC-kernels are plotted in reciprocal or real space in
Figs. 1(a) and 1(b). The reciprocal and real space XC-kernels
are related by the Fourier transform

f xc(n, k,ω) =


dRe−ik·R f xc(n,R,ω), (13)

with R = |r − r′|.

1. The rALDA kernel

The rALDA30 XC-kernel is given by

f rALDA
xc (n, k) = −


θ(kc − k)4π

k2
c

+ θ(k − kc)4π
k2


, (14)

where the Heaviside function θ(x) = 1 for x > 0 and zero
otherwise. The cutoff wavevector is chosen as

kc = kF/
√

A. (15)

In previous applications of this kernel,30,31 the coefficient
A defined by Eq. (10) was replaced by 1/4, corresponding to

omitting the correlation contribution. In this work, we shall
refer to this exchange-only kernel as the rALDA kernel f rALDA

xc .
The special label f rALDAc

xc (rALDAc) refers to the kernel calcu-
lated including both the exchange and correlation contribu-
tions in Eq. (10). We note that the rALDAc kernel coincides
with that of Ref. 61 with B = 1 and C = 0.

f rALDAc
xc obeys the exact k → 0, ω = 0 limit for the HEG

(Eq. (9)). Furthermore, both f rALDAc
xc and f rALDA

xc mimic the
HEG kernel64 in displaying small variation for wavevectors
below ∼2kF. At larger wavevectors, both kernels correspond
exactly to the Coulomb interaction with opposite sign, such
that the corresponding Hartree-XC kernels fHxc vanish for
k > kc. In real space, the kernel has the form

f rALDA
xc (n,R) = − 1

R


1 − 2

π

( kcR

0

sin x
x

dx

− [sin(kcR) − kcR cos(kcR)]
(kcR)2

)
(16)

with the Fourier transform of the Heaviside functions leading
to decaying oscillations [Fig. 1(b)]. At small R, the XC-kernel
diverges as −1/R, yielding a Hartree-XC kernel which is finite
at the origin.30

2. The CDOP kernel

The kernel introduced by CDOP in Ref. 17 has the form

f CDOP
xc (n, k) = −



4πα
k2
F

(
k

kF

)2

e−β(k/kF)2

+
4πB
k2
F

1
[g + (k/kF)2] +

4πC
k2
F


, (17)

FIG. 1. Comparison of model HEG XC-kernels, plotted in (a) reciprocal and (b) real space for rs = 2. In (b), the XC kernels are divided by the Coulomb
interaction vc, and the inset provides a zoomed image close to fxc = 0. Apart from the JGMs, all the XC-kernels are short-range, while (apart from CDOPs)
at small R, the XC-kernels cancel the Coulomb interaction such that fHxc vanishes. We have omitted the CDOP kernel in (b), since it matches CDOPs apart
from a δ-function at R = 0 (Eq. (18)). The CPd kernel was evaluated at an energy of 2 Hartrees and the JGMs kernel at a band gap of 3.4 eV. In (c), we plot the
wavevector-resolved correlation energy (Eq. (29)) at rs = 4 compared to the exact15 result obtained from the parameterization of the correlation hole given in
Refs. 67 and 68. In (d), we plot the difference in calculated correlation energies with a parameterization63 of Monte Carlo calculations69 of εc.
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where g = B/(A − C), and α and β are density-dependent fitt-
ing parameters chosen to best reproduce the local field factor
G(k,ω = 0) obtained from the quantum Monte Carlo calcula-
tions of Ref. 64.

Uniquely among the kernels considered here, the CDOP
kernel obeys both the k → 0 and k → ∞ limits of the HEG at
ω = 0, Eqs. (9) and (11). However as noted above, the short-
wavelength C term causes the pair-distribution function to
diverge.29 In Ref. 29, a simplified kernel which avoids this
divergence was obtained from Eq. (17) by setting C = 0. We
shall also investigate this kernel in this work, labeled CDOPs
( f CDOPs

xc ).
The real-space form of the CDOP kernel is

f CDOP
xc (n,R) = − 1

R
Be−

√
gkFR − 4πC

k2
F

δ(R)

+
αkF

4π2β

(
π

β

) 3
2 

k2
FR2

2β
− 3


e−k

2
F
R2/4β. (18)

We note that the C term in Eq. (17) produces a δ-function in
real-space, while for small R (excluding the δ-function), the
XC-kernel diverges as −B/R, such that the Hartree-XC kernel
is still divergent as (1 − B)/R.

3. The Constantin and Pitarke (CP) kernel

A kernel with a simpler functional form was introduced
by CP in Ref. 16,

f CP
xc (n, k) = −


4π
k2 (1 − e−κ0k

2)

. (19)

Here κ0 = A/k2
F, which ensures that the HEG k → 0, ω = 0

limit is satisfied. Like the rALDA kernels, at large wavevectors
f CP
xc (k) cancels the Coulomb interaction so that fHxc vanishes.

The CP kernel possesses a compact form in real space in terms
of the error function,

f CP
xc (n,R) = − 1

R


1 − erf

(
R
√

4κ0

)
. (20)

As R → 0, f CP
xc diverges as −1/R and thus yields a finite

Hartree-XC kernel in this limit.

4. The CPd dynamical kernel

With its simple form, the CP kernel is an ideal starting point
to explore more complex aspects of f xc, such as its frequency
dependence. In Ref. 16, a dynamical kernel was introduced
(CPd) by replacing κ0 appearing in Eq. (19) with κω, i.e.,

f CPd
xc (n, k,ω) = −


4π
k2 (1 − e−κωk2)


, (21)

where for imaginary frequency ω = is,

κω = κ0
1 + as + cs2

1 + s2 . (22)

In Ref. 16, the coefficient c = D/A was chosen to correctly
reproduce the k → 0, ω → ∞ limit of the HEG (Eq. (12)),
while the relation a = 6

√
c was found to give a good fit to the

correlation energy calculated for the HEG using f CPd
xc . We note

that the CPd kernel varies non-monotonically with frequency
in the k → 0 limit.16

5. The simplified “jellium with gap” (JGMs) kernel

The limits of the exact kernel discussed in Sec. II C 2
were derived for the HEG, which is metallic. However, the XC-
kernel of a periodic insulator is known to behave differently,
diverging ∝ 1/k2 in the k → 0 limit.36,37 This limit has been
found to play an essential role in the TD-DFT calculation of
excitonic effects in optical spectra, leading to the development
of kernels which exhibit the same 1/k2 divergence.38,70,71 Here,
we focus on the JGM kernel of Ref. 38, which has the useful
property of reducing to a model HEG kernel16 when applied
to a metallic system.

The JGM kernel of Ref. 38 was derived based on two
steps. First, the theoretical arguments of Ref. 72 were used to
connect the k → 0 limit of f xc to ϵ , the dielectric function,
as f xc(k → 0) = −4π/[k2(ϵ − 1)] (a similar relation was found
empirically in Ref. 70). Then, the model dielectric function of
Ref. 73 was used to relate ϵ to the band gap of the material Eg ,
as ϵ − 1 = 4πn/E2

g . The same power dependence may be found
for other model dielectric functions, e.g., the Penn model,74

and essentially follows from the f -sum rule. Combining these
relations places a requirement on the model kernel that it
diverges as −α/k2 in the small k limit, where α → E2

g/n.
In Ref. 38, the JGM kernel was constructed to satisfy

this divergence, based on a modified CP kernel introduced in
Ref. 16. Following their approach, starting from the unmod-
ified CP kernel f CP

xc , we introduce a simplified JGM (JGMs)
kernel f JGMs

xc for a system with a gap as

f JGMs
xc (n, k,Eg) = −


4π
k2 (1 − e−κ0k

2
e−E

2
g /(4πn))


. (23)

f JGMs
xc has many of the properties of the JGM kernel intro-

duced in Ref. 38. For systems with a band gap, the XC-kernel
diverges as −α/k2 at small k. For Eg = 0, f JGMs

xc reduces to
f CP
xc (Eq. (19)), while for Eg → ∞ f JGMs

xc → −vc, yielding a
vanishing correlation energy. Indeed, the JGMs kernel differs
only from the JGM kernel in its behavior at large k, with the
JGM kernel correctly reproducing the ω = 0 limit of the HEG
for Eg = 0 (Eq. (11)); concomitantly the JGM kernel has a
diverging pair-distribution function. By introducing the JGMs
kernel, we can study the effect of the−α/k2 divergence without
any additional complications potentially arising from a badly
behaved pair-distribution function.

The real-space form of the JGMs kernel is

f JGMs
xc (R) = − 1

R


1 − e−E

2
g /(4πn) erf

(
R
√

4κ0

)
. (24)

Equation (24) and Fig. 1(b) emphasize a unique property of
the JGMs kernel: it is long range. As a result, at large R,
the Hartree-XC kernel does not reduce to the bare Coulomb
kernel but rather to an interaction weakened by a factor
exp[−E2

g/(4πn)].

6. Coupling-constant dependence

Evaluating the integral over λ in Eq. (1) requires the f xc
kernel at an arbitrary coupling strength. We use the analysis of
Ref. 15 to link f λxc to the fully interacting kernel through the
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relation

f λxc(n, k,ω) = λ−1 f xc(n/λ3, k/λ,ω/λ2). (25)

The scaling of the density can be equivalently stated as λrs or
kF/λ. The (exchange-only) rALDA XC-kernel has the useful
property that f rALDA,λ

xc = λ f rALDA
xc .

For the JGMs kernel, we have an additional parameter Eg .
For simplicity, we employ a scaling

f JGMs,λ
xc (n, k,Eg) = λ−1 f JGMs

xc (n/λ3, k/λ,Eg/λ
1.5), (26)

equivalent to treating E2
g/n independent of λ.

7. Analogy with range-separated RPA

It is interesting to draw comparisons with RPA methods
based on the concept of range-separation.75–77 First, we trivi-
ally relabel the Hartree-XC kernel as an effective interaction
veff, i.e., veff = vc + f xc, noting from Fig. 1(b) that for most
of the kernels veff goes to zero at R → 0 and tends to the full
Coulomb interaction at large R. Now, specializing to a static
model XC-kernel which scales linearly with coupling constant,
f λxc(q) = λ f xc(q), we can partition the correlation energy in
Eq. (1) into two contributions Ec = ELR

c + ESR
c , with

ELR
c =

1
2π


q

 ∞

0
ds Tr [ln {1 − veff(q)χKS(q, is)}

+ veff(q)χKS(q, is)] , (27)

ESR
c =

1
2π


q

 1

0
dλ

 ∞

0
ds

×Tr


f xc(q)(χλ(q, is) − χKS(q, is))

. (28)

Equation (27) matches the RPA expression for the correlation
energy (Eq. (7)) with vc replaced with veff. Similarly, Eq. (28)
matches the expression for the full correlation energy (Eq. (1))
with vc replaced by − f xc, which is generally a short-ranged
interaction.

We can focus further on the specific example of the CP
XC-kernel (Eq. (19)), noting that this kernel can be linearized
in λ by neglecting the correlation contribution to A in Eq. (10).
Then, veff = erf(µR)/R, with the “range-separation param-
eter” µ determined by the density through µ = kF ∼ 1.9/rs.
This effective interaction is often found in the range-separated
RPA75 with µ of order unity.

We stress that Eqs. (27) and (28) are exact for any kernel
which obeys f λxc(q) = λ f xc(q). Since most of the XC-kernels
under study here do not obey this relation, we have not
explored Eqs. (27) and (28) further in this work. However
for XC-kernels linear in λ (e.g., the rALDA), there may
be a computational advantage in calculating ELR

c and ESR
c

separately. ELR
c requires only χKS and not χλ, so for a given

kernel, it can be obtained at exactly the same cost as the
RPA correlation energy. In fact, since the effective interac-
tion veff generally vanishes at large wavevectors, ELR

c can be
expected to avoid the basis-set convergence problems of the
RPA recently highlighted in Ref. 78. Meanwhile, it may be
possible to exploit the short-range character of f xc to reduce
the computational cost of calculating ESR

c from Eq. (28).

E. Calculating HEG correlation energies

A standard test of model HEG kernels is to calculate the
correlation energy per electron εc from Eqs. (1) and (8). For a
given density rs, εc can be resolved as an integral over k as15

εc =

 ∞

0
ε̄c(k)d(k/2kF). (29)

The quantity ε̄c(k) can be compared to the Fourier transform
of a suitable parameterization of the “exact” correlation hole
obtained from Monte Carlo calculations.15,67,68 Alternatively,
one can compute εc over a range of densities and compare
to the parameterized result.63 These comparisons are made in
Figs. 1(c) and 1(d), respectively.

The HEG analysis has been performed a number of
times15,16,30 so we only summarize the key points. The RPA
correlation is too negative, while including any of the XC-
kernels brings εc to within 0.1 eV of the exact result. Consid-
ering the wavevector decomposition in Fig. 1(c), we find
that the dynamical CPd kernel provides the best description
of the correlation hole at this density (rs = 4), but below
∼1.5kF, there is very little difference between any of the XC-
kernels and the exact result. Indeed, the ALDA (not shown)
also provides a good description of the correlation hole at
these wavevectors. At larger wavevectors, differences begin to
emerge between the kernels, with the CP kernel becoming too
negative, the CPd and CDOPs kernels closely following the
exact result, and the other kernels too positive. The rALDA
kernels are abruptly cut off at ε̄c(k) = 0, while the CDOP
kernel acquires a slowly decaying positive contribution. The
latter behavior is observed to a greater extent in the ALDA
and originates from the locality of the kernels.15,30

Over the full range of densities [Fig. 1(d)], we find that
the calculated correlation energy is slightly too positive with
the CDOP kernel and too negative with the CP and CDOPs
kernels. Interestingly, CDOPs is closer to the exact result
than CDOP, illustrating that removing the part of the CDOP
kernel which causes the pair-distribution function to diverge29

slightly improves the correlation energy. The rALDA kernels
fall closest to the exact result across a wide range of densities,
and the CPd kernel also provides a good description of the
correlation energy. Comparing rALDA and rALDAc, we see
that removing the correlation contribution from A in Eq. (10)
decreases the correlation energy per electron by less than
∼0.02 eV across a range of densities.

F. Coupling-constant averaged pair-distribution
function

Clearly, all of the considered kernels greatly improve the
correlation energy of the HEG compared to the RPA. The com-
mon characteristics shared by the kernels are that they satisfy
the exact k → 0, ω = 0 limit of the HEG (except the rALDA,
which neglects the correlation contribution in Eq. (10)) and
that they decay for wavevectors above 2kF. This decay is
essential to an accurate description of the energetics of the
HEG, with the ALDA (which does not decay at large k),
yielding a correlation energy which is too positive.30 However,
the fact that we only observe small variations between the
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kernels considered in Fig. 1(d) indicates that the precise form
of this decay is less important.

It is however interesting to consider the coupling-constant
averaged pair-distribution function ḡc(R),67 obtained as the
Fourier transform of ε̄c(k)multiplied by π/[2nkF].15 The pair-
distribution function gc(R) is obtained from the derivative of
ḡc(R) with respect to rs, and the exact gc and ḡc both satisfy
cusp conditions such that their slopes at R = 0 are generally
nonzero.65,67 Concentrating on ḡc(R), we note that in order
to describe a cusp in real space, we require Fourier compo-
nents [i.e., nonzero ε̄c(k)] at large k. Indeed, the analysis of
Ref. 65 finds that a frequency-independent kernel must decay
as −γ/k2, where γ < 4π, i.e., the Hartree-XC kernel retains
a 1/k2 term at large k. By considering Fig. 1(a), we see that
the rALDA, CP, and CPd kernels all decay as −4π/k2 such
that their Hartree-XC kernels vanish, so that ε̄c(k) also quickly
tends to zero at large wavevectors [Fig. 1(c)]. Thus, these
kernels cannot describe the cusp.

To illustrate this behavior, in Fig. 2, we plot ḡc(R) calcu-
lated at rs = 2 for the different kernels, compared to the RPA
and to the parameterization of Refs. 67 and 68. It is clear
that the coupling-constant averaged pair-distribution func-
tions calculated for the rALDA, CP, and CPd kernels are far
softer than those calculated for the RPA and CDOPs, whose
Hartree-XC kernels decay ∝ 1/k2. Meanwhile as noted above,
the local C term of the CDOP kernel causes a divergence in
ḡc(R).

The slope of coupling-constant averaged pair-distribution
function calculated in the RPA is too steep, while it is improved
for CDOPs. In Ref. 29, it was also found that gc(R) calcu-
lated for CDOPs agreed well with the exact result. The good
performance of the CDOPs kernel for calculations of the pair-
distribution function might have been anticipated from the fact
that the coefficient B appearing in Eq. (17) itself is determined
from g(R = 0).64 The above analysis illustrates how the precise
large-k behavior of a kernel affects its description of the cusp

FIG. 2. Coupling-constant averaged pair-distribution function ḡc(R) calcu-
lated at rs = 2 for the model HEG XC-kernels (see Fig. 1 for color code),
compared to the “exact” parameterization given in Eq. (36) of Ref. 67 (see
also Ref. 68). The inset shows the zoomed region around ḡc(R = 0).

of gc(R), despite playing a lesser role in the calculation of
energetics.

G. Applying HEG kernels to inhomogeneous systems

In order to calculate the correlation energy of an inhomo-
geneous system through Eq. (1), we require f xc evaluated in
a plane-wave basis, which in general is constructed from the
real-space kernel through

f GG′
xc (q,ω) = 1

V


V

dr

V

dr′e−i(q+G)·r

× f xc(r,r′,ω)ei(q+G′)·r′, (30)

where V is the volume of the entire crystal, consisting of Nq

replicas of the unit cell of volume Ω. The question is how
to incorporate into this formalism, a model (m) kernel which
has the form f mxc(n, k,ω) or f mxc(n, |r − r′|,ω). In the case that
the system is homogeneous (n(r) = n), we simply make the
substitution f xc(r,r′,ω) → f mxc(n, |r − r′|,ω) to get a diagonal
kernel,

f hom GG′
xc (q,ω) = δGG′ f mxc(n, |q +G|,ω). (31)

Alternatively, if the model kernel is fully local (independent of
k, e.g., the ALDA), it is natural to choose the local density to
construct the kernel and obtain

f loc GG′
xc (q,ω) = 1

Ω


Ω

dre−i(G−G′)·r f mxc(n(r),ω). (32)

However for nonlocal kernels and inhomogeneous systems, it
is not obvious how one should construct f xc(r,r′,ω), except
for two requirements. First, an arbitrary model kernel should
be symmetric in r and r′,79

f xc(r,r′,ω) = f xc(r′,r,ω). (33)

Second, for the JGMs kernel, we require that in the q → 0
limit, the head of f xc (i.e., G = G′ = 0) diverges as 1/q2 while
the wings (G , G′ = 0) diverge no faster than 1/q (Ref. 37).
As shown below, this second requirement turns out to exclude
previous schemes used in ACFD-DFT calculations, which we
now briefly review.

1. Density symmetrization

A symmetric kernel can be obtained by making the follow-
ing substitution into Eq. (30):

f xc(r,r′,ω) → f mxc(S[n], |r − r′|,ω). (34)

Here, S is a functional of the density symmetric in r and r′,
whose possible forms span a wide range of complexity.80,81

References22and31takea two-pointaverage,S[n] = 1/2[n(r)
+ n(r′)], which has an intuitive interpretation.

A disadvantage of the symmetrization in Eq. (34) is that in
order to evaluate Eq. (30), it is necessary to work with a real-
space representation of the kernel and perform an integration
over the entire volume of the crystal. For short-range kernels,
this integral can be converged by sampling over a number of
unit cells,31 but for a long-range kernel like f JGMs

xc [decaying
as −α/(4πR)], the required sampling might be prohibitively
large. Also, since the kernel is constructed in real space, it is
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not obvious how to control the 1/q divergences of the JGMs
kernel in reciprocal space. Finally, we note that the 1/R real-
space divergence of the kernels leads to slow convergence with
the real-space grid used to evaluate the integral in Eq. (30).31

2. Kernel symmetrization

An alternative approach followed in Ref. 29 is to start from
a nonsymmetric form of f xc, which we label f NS

xc ,

f NS
xc (r,r′,ω) = f mxc (n(r), |r − r′|,ω) . (35)

Inserting f NS
xc into Eq. (30) gives

f NS,GG′
xc (q,ω) = 1

Ω


Ω

dre−i(G−G′)·r f mxc (n(r), |q +G′|,ω) .
(36)

A symmetric kernel can then be obtained by averaging f NS,GG′
xc

with its Hermitian conjugate, i.e.,

f S,GG′
xc (q,ω) = 1

2

(
f NS,GG′
xc (q,ω) + 

f NS,G′G
xc (q,ω)∗) .

(37)

This procedure can be seen equivalently29 as inserting the
symmetric combination 1/2[ f NS

xc (r,r′,ω) + f NS
xc (r′,r,ω)] into

Eq. (30), and therefore corresponds to a two-point average of
the kernel; in the case that the kernel is linear in density, this
scheme is equivalent to averaging the density. Equation (36)
has the computational advantages that the integral is over a
single unit cell and requires only that the density (and not
the kernel) is represented on the real-space grid. However,
considering the JGMs XC-kernel, upon inserting Eq. (23) into
Eq. (36) and performing the average of Eq. (37), we are left
with a matrix whose wings diverge ∝ 1/q2 as q → 0, not 1/q
as required. Therefore, Eq. (37) is unsuitable for the current
study.

3. Wavevector symmetrization

In order to correctly deal with the JGMs kernel while
retaining some of the computational advantages of Eq. (36), we
follow the approach of Ref. 38 and symmetrize the wavevector
appearing in the right hand side of Eq. (36) with the substitu-
tion |q +G′| →  |q +G| |q +G′|,

f GG′
xc (q,ω) = 1

Ω


Ω

dre−i(G−G′)·r

× f mxc
(
n(r), |q +G| |q +G′|,ω)

. (38)

Like Eq. (36), Eq. (38) requires the integral over the unit cell
only and deals with the reciprocal-space form of the kernels.
Using Eq. (38) to construct the JGMs kernel yields a matrix
whose head and wings diverge in the q → 0 limit as 1/q2 or
1/q, as required, while the hermiticity of f GG′

xc (q,ω) automat-
ically satisfies the symmetry requirement (Eq. (33)). Trivially,
the averaging scheme will reproduce Eqs. (31) and (32) when
applied to systems with a homogeneous density or a local
kernel, and furthermore, the diagonal (G = G′) elements coin-
cide with those calculated with the two-point average of the
kernel, Eq. (37).

Since this work is concerned with the comparison of a
large number of kernels, we have elected to use Eq. (38) on
the grounds that it is relatively efficient and can deal with the
divergences in the JGMs kernel correctly. However, the phys-
ical interpretation of the off-diagonal elements arising from
the wavevector-symmetrization is not transparent. Although a
two-point scheme also suffers from limitations (e.g., the two-
point kernel has no knowledge of the medium lying between r
and r′), it still remains a more intuitive procedure. The fact that
we have to invoke an averaging scheme at all is an undesirable
consequence of using HEG kernels to describe inhomoge-
neous systems. In reality, the use of different schemes can only
be justified through testing and comparison with experiments
or other calculations, such as that performed in Refs. 29–32
and here.

H. Computational details

All calculations in this work were performed using the
GPAW code.82 The Kohn-Sham states and energies used to
construct the response function (Eq. (6)) were calculated
using the local-density approximation to DFT1,2,63 within
the projector-augmented wave (PAW) framework.83 We used
6 × 6 × 6 and 12 × 12 × 12 unshifted Monkhorst-Pack84

meshes to sample the Brillouin zone for insulators and metals,
respectively, and constructed the occupation factors for each
Kohn-Sham state using a Fermi-Dirac distribution function of
width 0.01 eV. For H, He, and H2, we used a simulation cell
of 6 × 6 × 7 Å3 and Γ-point sampling.

When calculating Ec, the wavefunctions were expanded
in a plane-wave basis set up to a maximum kinetic energy of
600 eV. Following previous studies,31,46 we used the frozen-
core approximation but included semicore states for some
elements.85 We note that norm-conservation was not enforced
in the generation of our PAW potentials, while it is reported
in Ref. 78 that including norm-conservation might increase
the magnitude of the RPA correlation energy and decrease the
calculated lattice constants for certain materials. As a result,
some care should be taken in making comparisons to experi-
ment, although we expect calculations including the XC-kernel
to be less sensitive to this convergence issue (Sec. II D 7).

For the matrices representing the response function and
kernel, we used a lower plane-wave cutoff Ecut of 400 eV
(300 eV for Na and H2), and a q grid matching the Brillouin
zone sampling of the ground-state calculation. We truncated
the sum-over-states appearing in Eq. (6) at a number of bands
equal to the number of plane waves describing the response
function, e.g. ∼700 for Si. Within this approximation, the
following extrapolation scheme is commonly used for the RPA
correlation energy:46,78

ERPA
c (Ecut) ∼ ERPA

c (Ecut → ∞) + KE−3/2
cut . (39)

In Ref. 31, it was proposed that the same expression can
be applied to the correlation energy calculated with the rALDA
kernel. We have tested this expression for each of the kernels
in Sec. II D for a set of 10 materials (see Sec. III A). As an
example, in Fig. 3, we plot the correlation energy per electron
calculated for MgO as a function of E−3/2

cut . As demonstrated by
the straight lines, Eq. (39) apparently gives a good description
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FIG. 3. The correlation energy Ec evaluated per electron for MgO at a lattice
constant of 4.23 Å, using different approximations for the XC-kernel (see
Fig. 1 for the color code). Ecut is the plane-wave cutoff used for the matrices
representing the response function and XC-kernel. The circles represent
calculated data points, and the lines are fits from Eq. (39).

of the correlation energy calculated for Ecut > 200 eV for all
of the kernels. We have observed the same behavior across the
combinations of materials and kernels. Therefore in order to
facilitate comparison across the entire test set, we will apply
Eq. (39) for all XC-kernels. We point out that the correlation
energy tends to converge faster (shallower lines in Fig. 3) when
a nonzero f xc is used, and for calculating structural properties,
the extrapolation is often unnecessary.

Constructing the XC-kernel with Eq. (38) is not straight-
forward due to the dual dependence on G and G′. Our current
implementation distributes the rows of the f xc matrix among
processors before evaluating the integral in Eq. (38). In the
future, it may be appropriate to improve performance through
an interpolation scheme, as for Refs. 29 and 86. On the other
hand, for the systems studied here, the time taken to construct
the kernel is small compared to that spent constructing the
response function χKS and inverting Eq. (3). When construct-
ing the kernel, we use the PAW all-electron density to be
consistent with previous work.31 The 1/q2 divergence of the
Coulomb interaction and JGMs kernel was treated within the
scheme described in Ref. 41.

Having obtained χλ, we evaluated Eq. (1) by numer-
ical (Gauss-Legendre) integration over the coupling constant
(Nλ = 8 points) and frequency (Nω = 16 points, using a loga-
rithmic mesh).49 By virtue of the scaling relation (Eq. (25)), we
must construct the rALDA kernel once, a general static kernel
Nλ times and a dynamical kernel NλNω times; hence, there is
a prefactor of ∼100 applied to computing f CPd

xc compared to
f rALDA
xc .

To calculate structural properties, we evaluated the total
energy (ELDA

Tot − ELDA
xc ) + Ex + Ec for seven lattice constants

centered around the experimental value and fit the values to the
Birch-Murnaghan equation of state.87 We used higher plane-
wave cutoffs of 800 eV (900 eV for MgO, LiCl, and LiF) to
evaluate the LDA energies and Ex, and used a denser sampl-

ing of the Brillouin zone combined with the Wigner-Seitz
truncation scheme described in Ref. 88 to calculate Ex. We
typically obtain converged exchange energies for insulators
with a sampling of 10 × 10 × 10, while metals require a denser
sampling88 (e.g. 20 × 20 × 20). Since the bulk modulus is con-
structed from derivatives of the energy, it is rather prone to
numerical error, to the extent that different code implemen-
tations of the same method can yield different results.89 In
this respect, one should attach more significance to the calcu-
lated lattice constants than bulk moduli, since the former are
more robust quantities. However even for the bulk moduli, one
expects a reduction in error when comparing different XC-
kernels within the same computational framework.

III. RESULTS AND DISCUSSION

A. Lattice constants and bulk moduli

We have selected a test set of 10 materials, consisting of
3 tetrahedrally bonded semiconductors (diamond C, Si, and
SiC), 3 ionic compounds (MgO, LiCl and LiF) and 4 metals
(Al, Na, Cu, and Pd). For each material, we used the XC-
kernels introduced in Sec. II D to calculate the lattice constant
and bulk modulus. Here, we compare these results to those
obtained from DFT (in the LDA or from the generalized-
gradient PBE functional90), the RPA, and to the experimental
values tabulated in Ref. 46.

1. General trends

Figure 4 shows the lattice constants and bulk moduli
calculated for C, MgO, and Al as a function of E−3/2

cut , a quantity
inversely proportional to the number of plane-waves describ-
ing the response function χKS and XC-kernel f xc (cf. Fig. 3).
The quantities at E−3/2

cut = 0 were calculated from Ec extrapo-
lated to infinite Ecut using Eq. (39). We also show the values
obtained from the LDA and experiment as horizontal lines.

There are three key observations to be made from Fig. 4.
First, for non-metallic systems, the rALDA, rALDAc, CDOPs,
and CP kernels yield almost identical results, which in turn
are very similar to the RPA. Second, the JGMs, CPd, and the
CDOP kernels (which, respectively, are long-range, dynamical
or have a local term) display distinct behavior. For instance,
the JGMs kernel predicts smaller lattice constants and larger
bulk moduli than the other XC-kernels. Finally, all of the XC-
kernels show faster convergence with respect to Ecut compared
to the RPA, as found for the correlation energy (Fig. 3).

Keeping the above points in mind, we extend this analysis
to the full test set and consider each kernel in turn. The entire
dataset is given in Fig. 5 and Table I.

2. LDA, PBE, and RPA

The LDA typically underestimates lattice constants and
overestimates bulk moduli, while PBE displays opposite
behavior. For tetrahedral semiconductors, the LDA is difficult
to beat and is by far the most computationally efficient scheme.
Using exact exchange and the RPA correlation energy yields
improved bulk moduli and lattice constants (e.g., a mean
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FIG. 4. Lattice constants and bulk moduli calculated with different XC-kernels for C, MgO, and Al, vs E−3/2
cut , where Ecut is the plane-wave cutoff of the response

function and XC-kernel matrices. The green and blue horizontal lines give the values calculated with the LDA and obtained from experiment, respectively, where
the experimental data were tabulated in Ref. 46 (note the LDA lattice constant/bulk modulus for Al [3.99 Å/83 GPa] is off the scale). The values at infinite cutoff
(E−3/2

cut = 0) were calculated from the correlation energies extrapolated from Eq. (39).

absolute error in lattice constants of 0.6% compared to 1.2%
for the LDA). Apart from Na, the calculated RPA lattice
constants are larger than the experimental values, a result also
found in Ref. 46.

3. rALDA and rALDAc

For the non-metallic systems, the rALDA and rALDAc
kernels produce lattice constants and bulk moduli which are
essentially indistinguishable from each other. In turn, these
results are in close agreement with the RPA. For metals, one
can identify differences between the kernels, although the
magnitude of variation is still very small (<0.1%). The close

agreement between rALDA and rALDAc confirms that the
exchange contribution dominates in Eq. (10) and supports the
use of the exchange-only rALDA kernel.

The rALDA kernels also display the fastest convergence
with respect to Ecut. Recalling the form of the kernels (Eq. (14)),
the components of fHxc are truncated for wavevectors exceed-
ing the cutoff kc. For a homogeneous system (Eq. (8)), for
k ′ > kc, the interacting and non-interacting response functions
coincide and therefore the contribution to the correlation en-
ergy at these wavevectors vanishes. In inhomogeneous sys-
tems, high-density regions (large kc) give terms that converge
like the RPA, but the rALDA convergence is still superior after
the kernel averaging procedure (Eq. (38)) is applied.

FIG. 5. Percentage deviation from experiment of calculated lattice constants and bulk moduli for the test set of 10 materials. The values used to construct the
plots are presented in Table I. Each line corresponds to a different approximation for fxc.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

192.38.67.115 On: Tue, 19 May 2015 07:04:30



102802-11 C. E. Patrick and K. S. Thygesen J. Chem. Phys. 143, 102802 (2015)

TABLE I. Lattice constants (in Å) and bulk moduli (GPa) calculated for the test set of 10 materials compared to the experimental data tabulated in Ref. 46. The
results were calculated from correlation energies obtained by the extrapolation procedure of Eq. (39). The mean absolute error (M.A.E.) compared to experiment
is shown in the final row. The experimental lattice constants were corrected for expansion due to zero-point motion; the bulk moduli have not been corrected.
For comparison, the LDA and RPA calculations of Ref. 46 are also presented (note that these RPA calculations were performed on top of Kohn-Sham states
obtained within the generalized-gradient approximation90). The CP and JGMs kernels coincide for metallic systems.

LDA LDAa PBE RPA RPAa rALDA rALDAc CDOP CDOPs CP CPd JGMs Expt.

C 3.533 3.534 3.573 3.566 3.572 3.563 3.562 3.561 3.565 3.562 3.553 3.550 3.553
Si 5.407 5.404 5.477 5.449 5.432 5.456 5.453 5.446 5.452 5.454 5.450 5.437 5.421
SiC 4.338 4.332 4.390 4.380 4.365 4.380 4.379 4.374 4.379 4.378 4.371 4.361 4.346
MgO 4.163 4.169 4.255 4.229 4.225 4.229 4.228 4.224 4.231 4.228 4.222 4.202 4.189
LiCl 4.972 4.967 5.157 5.082 5.074 5.099 5.097 5.069 5.094 5.093 5.095 4.996 5.070
LiF 3.926 3.913 4.080 4.010 3.998 4.011 4.011 3.989 4.013 4.010 4.007 3.978 3.972
Al 3.987 3.983 4.044 4.042 4.037 4.053 4.051 4.041 4.048 4.050 4.051 4.050 4.018
Na 4.054 4.056 4.197 4.205 4.182 4.229 4.225 4.221 4.233 4.232 4.257 4.232 4.214
Cu 3.530 3.523 3.643 3.622 3.597 3.612 3.616 3.622 3.625 3.625 3.626 3.625 3.595
Pd 3.839 3.830 3.941 3.914 3.896 3.919 3.918 3.916 3.920 3.920 3.918 3.920 3.876

% M.A.E. 1.2 1.3 1.3 0.6 0.5 0.7 0.7 0.5 0.7 0.7 0.7 0.6 . . .

LDA LDAa PBE RPA RPAa rALDA rALDAc CDOP CDOPs CP CPd JGMs Expt.

C 465 465 432 435 441 439 440 443 439 439 448 455 443
Si 95 97 88 95 99 95 95 96 95 95 99 98 99
SiC 228 229 211 220 223 220 221 223 221 221 224 231 225
MgO 172 172 151 163 168 161 161 164 161 162 163 174 165
LiCl 41 41 31 36 37 35 35 38 36 36 35 40 35
LiF 86 87 67 71 76 71 71 77 72 72 72 72 70
Al 83 84 77 78 77 76 76 78 76 76 75 76 79
Na 9 9 8 8 8 8 8 8 8 8 7 8 8
Cu 184 186 136 156 153 156 156 155 151 151 152 151 142
Pd 226 226 169 199 181 195 196 196 194 194 192 194 195

% M.A.E. 12 12 7 3 3 3 3 4 3 3 3 4 . . .

aReference 46.

From this convergence behavior, we conclude that the
short-range description of correlation obtained from an XC-
kernel like the rALDA is easier to describe in a plane-wave
basis than the erroneous short-range behavior of the RPA. This
result might have been anticipated from the HEG, where the
coupling-constant averaged pair-distribution function calcu-
lated for the rALDA is softer than for the RPA (Fig. 2).

4. CP and CDOPs

The CP and CDOPs kernels yield lattice constants and
bulk moduli which are also very similar to each other across
the full range of systems. This behavior can be explained
by considering Fig. 1(a), where it can be seen that f CDOPs

xc

lies more negative than f CP
xc for k less that ∼2kF, and more

positive otherwise. The kernel averaging procedure smears out
these differences. In particular, there is a negligible effect from
modifying the large-k behavior from −4πB/k2 (CDOPs) to
−4π/k2 (CP).

f CDOPs
xc and f CP

xc closely follow the rALDA kernels (and the
RPA) for non-metallic systems. For metallic systems, differ-
ences of order 0.3% can be observed. The most likely reason
for this difference is the long-range behavior of the rALDA
kernels, which display decaying oscillations, compared to the
CDOPs and CP kernels which go to zero more smoothly. The
small positive hump displayed by the CDOPs kernel in real

space [Fig. 1(b)] appears to have little effect on the correlation
energy.

5. CDOP

The CDOP kernel (Eq. (17)) differs from f CDOPs
xc by hav-

ing a local term. This local term has a noticeable effect on
the calculated structural properties, with the CDOP kernel
predicting slightly smaller and larger lattice constants and
bulk moduli, respectively. Indeed, the CDOP kernel displays
the closest agreement with experimental lattice constants, but
performs less well on bulk moduli.

In Sec. II C 4, it was pointed out that the local term
in the CDOP kernel leads to a divergent pair-distribution
function. The local term may also be expected to introduce
convergence problems, as demonstrated for the (entirely local)
ALDA kernel.27,30 In the current work, we have not found
any significant difference in the convergence behavior of the
CDOP and CDOPs kernels when calculating lattice constants
and bulk moduli for Ecut ≤ 400 eV. Only in cases where the
RPA correlation energy converges relatively quickly (e.g., Al),
we can observe a slowly converging positive contribution to
the CDOP correlation energy which is reminiscent of that
found for the ALDA, cf. Fig. 3 of Ref. 30. However, unlike
for the ALDA, the magnitude of this contribution is very small
compared to the RPA-like convergence (e.g., Fig. 3).
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6. CPd

The dynamical CPd kernel displays slight differences to
its ω = 0 limit, f CP

xc . Compared to the static kernels where the
range of f xc is fixed by the density, for the CPd kernel, the
frequency appearing in the denominator of χKS also affects
the range. Interestingly, the CPd bulk moduli of insulators are
slightly closer to experiment. In other cases, we find that the CP
and CPd kernels predict similar results except for Na, where
the CPd kernel finds a larger lattice constant and smaller bulk
modulus, and C, where the CPd lattice constant lies on top of
the experimental value.

The CPd results show that even a simple dynamical kernel
can predict different structural properties. This result is not
obvious from studies on the HEG, where tests on the more
complicated frequency-dependent kernel of Ref. 18 found
dynamical effects to be less important than nonlocality when
calculating correlation energies.15 Although we do not observe
systematic improvement with the CPd kernel, it would be
interesting to investigate its performance for systems with a
greater degree of inhomogeneity, e.g., molecules and surfaces.

7. JGMs

The lattice constants calculated with the JGMs kernel for
insulating systems display the closest agreement with experi-
ment out of all of the considered kernels, except for the notable
example of LiCl, where the JGMs lattice constant is underes-
timated by 1.4%. However the agreement with experimental
bulk moduli is poorer, in some cases (SiC, MgO) worse than
the LDA. For metallic systems, the JGMs and CP kernels
coincide.

It is important to establish the importance of the value
of Eg . In the current work, we have used the experimental,
direct gap (Table II), but we equally could have chosen the
indirect gap or even defined a more general r-dependent gap
function.98 An alternative option is to make the link to the
description of excitons38,70 and consider the head (G = G′ = 0)
of f JGMs

xc in the q → 0 limit, which can be written as −⟨α⟩/q2,
where

⟨α⟩ = 4π
Ω


Ω

dr

1 − e−E

2
g /[4πn(r)]


. (40)

The values of ⟨α⟩ computed from Eq. (40) for the experimental
gaps are given in Table II. These values can be compared

TABLE II. Parameters relating to the JGMs kernel. The values of ⟨α⟩ were
obtained by inserting the experimental band gaps Eg into Eq. (40), while
inserting the “effective gaps” Eeff

g yields the αLRC values reported in Ref. 70
(these calculations were performed at the experimental lattice constant). The
αLRC values for LiCl and LiF were obtained from Eq. (4) of Ref. 70 using the
dielectric constants tabulated in Ref. 91. The experimental (direct) band gaps
were obtained from Refs. 92–97.

C Si SiC MgO LiCl LiF

Eg (eV) 7.3 3.4 6.0 7.8 9.4 14.2
⟨α⟩ 0.58 0.89 1.30 2.32 5.60 7.03

Eeff
g (eV) 7.43 1.57 3.62 6.74 3.98 6.07

αLRC 0.6 0.2 0.5 1.8 1.5 2.2

to Ref. 70, where a long-range (LRC) attractive kernel was
introduced as f xc(R) = −αLRC/(4πR). We note that the head
of this matrix in reciprocal space in the q → 0 limit coincides
with the JGMs kernel with αLRC → ⟨α⟩, and also that this
single matrix element is considered the most important for the
calculation of excitonic effects.70

From Table II, it is clear that the values of ⟨α⟩ calculated
with the experimental gaps and PAW densities are somewhat
larger than the values of αLRC reported in Ref. 70, which were
found to give a good description of excitonic effects in absorp-
tion spectra of semiconductors and MgO. To explore this point,
further, we adopted an inverse approach and considered an
effective gap Eeff

g , which when inserted into Eq. (40) yields
αLRC. These LRC “gaps” are smaller than experimental values,
especially for the ionic compounds. Indeed, the empirical αLRC
values of LiCl and LiF are significantly smaller than those
expected both from the JGM or bootstrap kernels,38,71 which
have been shown to accurately capture the exciton in LiF.

We repeated the JGMs kernel calculations using the LRC
gaps Eeff

g and show the obtained lattice constants in Fig. 6.
The LRC results lie between the lattice constants calculated
with the RPA and with the JGMs kernel/experimental gaps,
and thus improve the LiCl result. Comparison of LiCl and LiF
demonstrates the nonlinear relation between Eeff

g and the lattice
constant. In both cases, the effective gap is reduced by more
than 50% from its experimental value, but the effect on the
LiCl lattice constant is an order of magnitude larger than for
LiF.

The improved agreement of lattice constants with experi-
ment compared to the RPA shows that XC-kernels with long-
range components represent an interesting avenue to study.
A key question is whether the tendency for the JGMs kernel
to favor smaller lattice constants than the RPA is directly
related to the fundamental long-range character of the former,
or whether it is in fact a consequence of the precise form of
the kernel. The strength of the long-range part of the JGMs

FIG. 6. Percentage deviations of lattice constants compared to experiment,46

calculated with the RPA, and the JGMs kernel using the experimental direct
band gaps or effective LRC gaps (see Table II).
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Hartree-XC kernel is determined by exp(−E2
g/4πn) (Eq. (23)),

which becomes RPA-like in the high density limit and vanishes
in the low density limit. The RPA correlation energy is gener-
ally negative, while a zero fHxc implies a zero correlation
energy. Interpolating these two limits implies that a more
negative (i.e., stable) JGMs correlation energy will correspond
to a higher density, thus favoring a lower lattice constant.
This observation also provides an explanation for the varying
behavior of the bulk modulus and also the strong nonlinearity
in the variation of the lattice constant with band gap, since
the energy-volume relation is expected to be sensitive to the
relative magnitude of Eg and n.

We note that the bootstrap approach71 is an alternative
method of constructing a long-range kernel. Since the boot-
strap kernel is constructed from χKS, using it would avoid
both the input of Eg and the averaging procedures discussed
in Sec. II G. However, it would be necessary to ensure that
the bootstrap kernel displayed reasonable behavior in the large
k-limit.

B. Absolute correlation energies

In Fig. 7, we show the absolute correlation energy per
electron calculated using each of the different kernels for the
materials in the test set. Absolute correlation energies are
generally considered less robust than properties constructed
from energy differences, being more difficult to converge
and sensitive to details of the PAW potentials. However,
one can still perform a comparison between kernels and
look for similarities with the trends observed for the HEG
[Fig. 1(d)].

The most obvious feature of Fig. 7 is the reduction of
absolute correlation energy on moving from the RPA to a
nonzero f xc, ranging from 0.1 eV for Na to 0.5 eV for Si.
This change is the same order of magnitude as observed for the
HEG. The ordering of the HEG correlation energy calculated
with different kernels is also largely preserved, with the CP and
CDOPs kernels predicting larger magnitudes than CDOP and
the rALDA kernels.

The difference between the rALDA and rALDAc ker-
nels is small, with the rALDA correlation energy being more
negative by order 1% or 0.01 eV per electron. The difference
between the static and dynamical forms of the CP kernel is an
order of magnitude larger, with the static correlation energy
being more negative. Meanwhile, the removal of the local term
in the CDOP kernel increases the magnitude of the correlation

energy, with the CDOPs having a more negative correlation
energy than CDOP by 5% or 0.05 eV per electron.

As in Ref. 29, we can tentatively compare our calcu-
lated correlation energy for Si with the diffusion Monte Carlo
(DMC) calculations of Ref. 99. Reassuringly the DMC corre-
lation energy lies among the values calculated with the model
exchange kernels (Fig. 7), in fact displaying closest agreement
with CPd, rALDA, and CDOP kernels. We also note that our
calculated CDOP correlation energy for Si (−1.02 eV per
electron) lies on top of the value recently reported in Ref. 29
using a pseudopotential approximation and a different aver-
aging scheme (Eq. (37)). With highly accurate calculations
of correlation energies in extended systems now becoming a
reality,100 comparisons of this sort should become a useful test
for new kernels.

C. Kernel averaging scheme

It is interesting to compare the structural properties and
correlation energies calculated using the symmetrized-
wavevector averaging scheme (Eq. (38)) to the two-point sym-
metrized density (Eq. (34)). The latter has previously been im-
plemented for the rALDA,31 so here we restrict the comparison
to this kernel.

Considering the lattice constants first, we typically find
a difference of 0.2% between the two methods, with the
symmetrized-density values larger than those calculated with
the symmetrized-wavevector in most cases. Interestingly, the
agreement is worse for the bulk moduli, with an average devia-
tion of 6%. The absolute correlation energies also show a larger
(4%) deviation, where using the two-point symmetrized den-
sity scheme consistently yields more negative rALDA corre-
lation energies than the symmetrized-wavevector scheme, by
an average of 0.04 eV per electron.

To understand the origin of these differences, it is neces-
sary to consider the practical implementation of the two-point
density average (Eq. (34)). As mentioned in Sec. II G, con-
structing the kernel in this way involves sampling the 1/R
Coulomb interaction in real space. The divergence at R = 0 is
replaced with a spherical average of 1/R taken over the volume
per point in the real-space grid used to evaluate the integral.31

The absolute correlation energy is therefore rather sensitive to
this grid spacing, and its dependence on volume (i.e., the bulk
modulus) will also be difficult to converge.

The symmetrized-wavevector approach only samples the
density on the real space grid, and therefore shows a much

FIG. 7. Absolute correlation energies
Ec (Eq. (1)) calculated per (valence)
electron for different kernels. The cor-
relation energy obtained for Si from the
DMC calculations of Ref. 99 is also
shown. The core/valence partitioning of
the PAW potentials is given in Ref. 85.
The calculations were performed at the
experimental lattice constant.
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weaker dependence on the spacing between the grid points. We
verified this behavior for diamond C, where the symmetrized-
wavevector correlation energy changes by less than 10−5 eV/
electron on reducing the grid spacing from 0.17 to 0.11 Å. This
is several orders of magnitude faster than the symmetrized-
density approach,31 illustrating a computational advantage of
Eq. (38).

D. Spin and atomization energies: The H2 molecule

Throughout this study, we have not considered any spin-
dependence of the XC-kernels. However, the calculation of
atomization or cohesive energies usually requires the descrip-
tion of spin-polarized atoms or molecules. In this section, we
provide a demonstration of the importance of spin by calculat-
ing the atomization energy of the H2 molecule with the rALDA
kernel.

First, we note that the symmetrized-wavevector averag-
ing procedure (Eq. (38)) can be equally applied to extended
and finite systems. In fact, for the rALDA kernel, one can
exploit the fact that the Hartree-XC kernel strictly vanishes
at any points in space where the density is less than
(|G + q||G′ + q|)3/2/(24π2). Therefore, the Fourier transform
can be performed in a small box which excludes the vacuum
region generally required to model isolated systems with
periodic boundary conditions. Since the H2 molecule is spin-
unpolarized, we can calculate its correlation energy without
any further consideration and obtain a value of −1.04 eV with
the rALDA kernel. This value is within 0.1 eV of the value
obtained from coupled-cluster calculations101 and a significant
improvement (>1 eV) over the RPA. We find a similar level of
agreement for the He atom (Table III).

For the spin-polarized H atom, following the analysis of
Ref. 31, we replace the integral equation (Eq. (3)) with its the
spin-polarized version, valid for systems where only one spin
channel is occupied,

χ↑↑(q,ω) = χ↑KS(q,ω) + χ↑KS(q,ω) f ↑↑Hxc(q,ω)χ↑↑(q,ω).
(41)

The above quantities are related to Eq. (1) through the simple
substitutions χ → χ↑↑ and χKS → χ↑KS.

Proceeding further requires the spin-polarized form of the
Hartree-XC kernel f ↑↑Hxc(q,ω). To our knowledge, of the XC-
kernels studied in this work, f ↑↑Hxc has been derived only for

TABLE III. Correlation energies of H, H2, and He and the atomization energy
of the H2 molecule [Eat(H2)] calculated at different levels of theory. The
CCSD values are taken from Ref. 101 and the experimental atomization
energy from Ref. 102. The rALDA results were calculated including spin-
polarization, with the kernels constructed either from Eq. (38) or Eq. (34).
All values are given in eV.

RPA rALDAa rALDAb CCSD Expt.

H −0.57 0.06 −0.02 0.00 . . .
H2 −2.22 −1.04 −1.22 −1.11 . . .
He −1.82 −1.00 −1.08 −1.14 . . .
Eat(H2) 4.74 4.82 4.85 4.75 4.75

aSymmetrized wavevector, Eq. (38).
bSymmetrized density, Eq. (34).

the rALDA, given as31

f ↑↑Hxc(k) =
4π
k2 −


2 × θ(kc − k)4π

k2
c

+ θ(k − kc)4π
k2


. (42)

Equation (42) differs from the spin-unpolarized rALDA
expression (Eq. (14)) by a factor of two in front of the part of
the kernel corresponding to the ALDA, reflecting the fact that
the exchange interaction acts only between electrons with the
same spin. Using Eqs. (41) and (42) to calculate the correlation
energy of the H atom yields a value of 0.06 eV, compared to
the exact value of zero and an RPA value of −0.57 eV.

Taking the H and H2 calculations together yields an
rALDA atomization energy of 4.82 eV, which is within 0.1 eV
of the experimental value of 4.75 eV.102 We note that the
RPA benefits from substantial error cancellation and yields
an atomization energy very close to experiment (4.74 eV,
Table III). However, the H2 molecule is a rather special case,
and the RPA usually demonstrates percentage errors of order
10% in atomization energies.32 The rALDA kernel corrects the
correlation energies of the individual H2 and H systems and
maintains close agreement with the experimental atomization
energy.

In Table III, we also present the rALDA correlation ener-
gies using the two-point density average, Eq. (34). As found in
bulk systems, the correlation energies calculated with the two-
point density average are more negative (∼0.06 eV/electron)
than those calculated with the symmetrized wavevector. How-
ever, the agreement in atomization energies is better than
0.03 eV. We find it encouraging that the symmetrized-
wavevector approach gives such similar results to the more
intuitive two-point density average when calculating the atom-
ization energy.

We note that if we do not use the spin-polarized form of
the kernel (Eq. (42)), we find a correlation energy of −0.17 eV
for the H atom and an atomization energy of 4.37 eV. This
value is in significantly worse agreement with experiment than
the RPA or even the LDA (4.89 eV), emphasizing the impor-
tance of a rigorous treatment of spin. An important direction
for further study is the introduction of spin-dependence into
kernels derived from the spin-unpolarized HEG.

IV. CONCLUSIONS

We have calculated the correlation energy of a test set of
10 materials within the ACFD-DFT. We used a hierarchy of
approximations for the XC kernel f xc, including the random
phase approximation ( f xc = 0), the recently introduced renor-
malized kernels (rALDA),31 a kernel which satisfies the exact
static limits of the electron gas (CDOP),17 a model dynam-
ical kernel (CPd),16 and a kernel which diverges ∝ 1/k2 in
the small-k limit (JGMs).38 In order to apply homogeneous
kernels to inhomogeneous systems, we applied a reciprocal
space averaging scheme employing wavevector symmetriza-
tion.38 For each kernel and material pair, we calculated the
lattice constant and bulk modulus and compared our results
to previous calculations and experiment.46

For all materials, including a nonzero f xc reduces the
magnitude of the correlation energy compared to the RPA by
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0.1–0.5 eV per electron. This result mirrors the HEG, where
the RPA correlation energy is too negative by at least 0.3 eV
over a wide range of densities.15 However, the variation in
correlation energy between each f xc is much smaller, on the
scale of 0.01–0.1 eV per electron. Encouragingly, the correla-
tion energies calculated with XC-kernels are found to lie very
close to diffusion Monte Carlo data available for Si.99 Further-
more, calculations with XC-kernels display faster basis-set
convergence than the RPA due to the suppression of high
energy plane-wave components of the Coulomb potential.

Considering lattice constants and bulk moduli, we found
only small variations between the RPA and different XC-
kernels. In particular, static XC-kernels that only satisfy the
k → 0,ω = 0 limit of the HEG (rALDA, CP, CDOPs) produce
very similar results. The structural properties calculated with
the dynamical CPd kernel are in better agreement with experi-
ment in some cases (e.g., the bulk moduli of non-metallic sys-
tems), but the improvement is not systematic (e.g., Na). Satis-
fying the k → ∞, ω = 0 limit of the HEG (which adds a local
term to f xc, e.g., the CDOP kernel) also yields good agreement
with experimental lattice constants, despite the kernel hav-
ing a diverging pair-distribution function.29 Finally, the JGMs
kernel predicts a reduction in lattice constants and an increase
in bulk moduli for non-metallic systems, bringing the former
into closer agreement with experiment. The current study how-
ever cannot distinguish whether this behavior is due to the
general long-range −α/(4πR) character of the kernel,70 or to
the density-dependence of α specific to the JGMs model.38

The ACFD-DFT scheme described here clearly involves
a number of choices, including (a) the approximation used
to generate the noninteracting response function χKS, (b) the
form of f xc (including spin-dependence), and (c) the averaging
scheme used to generalize a HEG XC-kernel to an inhomoge-
neous system. Fixing all factors except (b), as we have done
here, points us towards the essential properties of a model
f xc. Based on the similar performance of the different XC-
kernels, the current work supports the idea that f xc should be
kept as simple as possible, i.e., be static, tend to a density-
dependent constant at small k, and decay ∝ 1/k2 at large k.
In this respect, the exchange-only rALDA kernel is attractive,
since it scales simply with the coupling constant λ and has good
convergence properties. The introduction of additional compu-
tational expense and uncertainty associated with a dynamical
kernel, a divergence ∝ 1/k2 at k = 0 or even a local term in
f xc, is difficult to justify based on the performance of the
CPd, JGMs, and CDOP kernels for lattice constants and bulk
moduli, although each kernel was found to offer improved
agreement with experiment in certain cases.

On the other hand, by focusing on the structural properties
of bulk solids, we have chosen systems where the RPA already
performs very well. It is encouraging that the model XC-
kernels can maintain this good performance whilst correct-
ing the magnitude of the correlation energy by several eV
per atom, but arguably their real test lies in cases where the
RPA is less successful. Already, the rALDA kernel has been
found to improve the description of atomization and cohesive
energies31,32 but a number of challenges remain, particularly
in the description of molecular dissociation.46,75,103,104 The
framework described in the current study provides the base

for the application of a full range of kernels to these more
challenging systems.
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