62 research outputs found

    Staphylococcus aureus biofilm formation and antibiotic susceptibility tests on polystyrene and metal surfaces.

    Get PDF
    Aim:  We compared the MBEC™-HTP assay plates made of polystyrene with metal discs composed of TMZF® and CrCo as substrates for biofilm formation. Methods and Results: Staphylococcus aureus was grown on polystyrene and on metal discs made of titanium and chrome–cobalt. Antibiotic susceptibility was assessed by examining the recovery of cells after antibiotic exposure and by measuring the biofilm inhibitory concentration (BIC). The minimal inhibitory concentration (MIC) was assessed with planktonic cells. Bacterial growth was examined by scanning electron microscopy. The antibiotic concentration for biofilm inhibition (BIC) was higher than the MIC for all antibiotics. Microscopic images showed the biofilm structure characterized by groups of cells covered by a film. Conclusions:  All models allowed biofilm formation and testing with several antibiotics in vitro. Gentamicin and rifampicin are the most effective inhibitors of Staph. aureus biofilm-related infections. We recommend MBEC™-HTP assay for rapid testing of multiple substances and TMZF® and CrCo discs for low-throughput testing of antibiotic susceptibility and for microscopic analysis. Significance and Impact of the Study: In vitro assays can improve the understanding of biofilms and help developing methods to eliminate biofilms from implant surfaces. One advantage of the TMZF® and CrCo discs as biofilm in vitro assay is that these metals are commonly used for orthopaedic implants. These models are usable for future periprosthetic joint infection studies

    Scanning electron microscopy of the neuropathology of murine cerebral malaria

    Get PDF
    BACKGROUND: The mechanisms leading to death and functional impairments due to cerebral malaria (CM) are yet not fully understood. Most of the knowledge about the pathomechanisms of CM originates from studies in animal models. Though extensive histopathological studies of the murine brain during CM are existing, alterations have not been visualized by scanning electron microscopy (SEM) so far. The present study investigates the neuropathological features of murine CM by applying SEM. METHODS: C57BL/6J mice were infected with Plasmodium berghei ANKA blood stages. When typical symptoms of CM developed perfused brains were processed for SEM or light microscopy, respectively. RESULTS: Ultrastructural hallmarks were disruption of vessel walls, parenchymal haemorrhage, leukocyte sequestration to the endothelium, and diapedesis of macrophages and lymphocytes into the Virchow-Robin space. Villous appearance of observed lymphocytes were indicative of activated state. Cerebral oedema was evidenced by enlargement of perivascular spaces. CONCLUSION: The results of the present study corroborate the current understanding of CM pathophysiology, further support the prominent role of the local immune system in the neuropathology of CM and might expose new perspectives for further interventional studies

    Horizontal gene transfer contributed to the evolution of extracellular surface structures

    Get PDF
    The single-cell layered ectoderm of the fresh water polyp Hydra fulfills the function of an epidermis by protecting the animals from the surrounding medium. Its outer surface is covered by a fibrous structure termed the cuticle layer, with similarity to the extracellular surface coats of mammalian epithelia. In this paper we have identified molecular components of the cuticle. We show that its outermost layer contains glycoproteins and glycosaminoglycans and we have identified chondroitin and chondroitin-6-sulfate chains. In a search for proteins that could be involved in organising this structure we found PPOD proteins and several members of a protein family containing only SWT (sweet tooth) domains. Structural analyses indicate that PPODs consist of two tandem β-trefoil domains with similarity to carbohydrate-binding sites found in lectins. Experimental evidence confirmed that PPODs can bind sulfated glycans and are secreted into the cuticle layer from granules localized under the apical surface of the ectodermal epithelial cells. PPODs are taxon-specific proteins which appear to have entered the Hydra genome by horizontal gene transfer from bacteria. Their acquisition at the time Hydra evolved from a marine ancestor may have been critical for the transition to the freshwater environment

    Fusion pore expansion is a slow, discontinuous, and Ca2+-dependent process regulating secretion from alveolar type II cells

    Get PDF
    In alveolar type II cells, the release of surfactant is considerably delayed after the formation of exocytotic fusion pores, suggesting that content dispersal may be limited by fusion pore diameter and subject to regulation at a postfusion level. To address this issue, we used confocal FRAP and N-(3-triethylammoniumpropyl)-4-(4-[dibutylamino]styryl) pyridinium dibromide (FM 1-43), a dye yielding intense localized fluorescence of surfactant when entering the vesicle lumen through the fusion pore (Haller, T., J. Ortmayr, F. Friedrich, H. Volkl, and P. Dietl. 1998. Proc. Natl. Acad. Sci. USA. 95:1579–1584). Thus, we have been able to monitor the dynamics of individual fusion pores up to hours in intact cells, and to calculate pore diameters using a diffusion model derived from Fick's law. After formation, fusion pores were arrested in a state impeding the release of vesicle contents, and expanded at irregular times thereafter. The expansion rate of initial pores and the probability of late expansions were increased by elevation of the cytoplasmic Ca2+ concentration. Consistently, content release correlated with the occurrence of Ca2+ oscillations in ATP-treated cells, and expanded fusion pores were detectable by EM. This study supports a new concept in exocytosis, implicating fusion pores in the regulation of content release for extended periods after initial formation

    Retinal regions shape human and murine Müller cell proteome profile and functionality

    Full text link
    The human macula is a highly specialized retinal region with pit‐like morphology and rich in cones. How Müller cells, the principal glial cell type in the retina, are adapted to this environment is still poorly understood. We compared proteomic data from cone‐ and rod‐rich retinae from human and mice and identified different expression profiles of cone‐ and rod‐associated Müller cells that converged on pathways representing extracellular matrix and cell adhesion. In particular, epiplakin (EPPK1), which is thought to play a role in intermediate filament organization, was highly expressed in macular Müller cells. Furthermore, EPPK1 knockout in a human Müller cell‐derived cell line led to a decrease in traction forces as well as to changes in cell size, shape, and filopodia characteristics. We here identified EPPK1 as a central molecular player in the region‐specific architecture of the human retina, which likely enables specific functions under the immense mechanical loads in vivo

    Complement activating antibodies to myelin oligodendrocyte glycoprotein in neuromyelitis optica and related disorders

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum autoantibodies against the water channel aquaporin-4 (AQP4) are important diagnostic biomarkers and pathogenic factors for neuromyelitis optica (NMO). However, AQP4-IgG are absent in 5-40% of all NMO patients and the target of the autoimmune response in these patients is unknown. Since recent studies indicate that autoimmune responses to myelin oligodendrocyte glycoprotein (MOG) can induce an NMO-like disease in experimental animal models, we speculate that MOG might be an autoantigen in AQP4-IgG seronegative NMO. Although high-titer autoantibodies to human native MOG were mainly detected in a subgroup of pediatric acute disseminated encephalomyelitis (ADEM) and multiple sclerosis (MS) patients, their role in NMO and High-risk NMO (HR-NMO; recurrent optic neuritis-rON or longitudinally extensive transverse myelitis-LETM) remains unresolved.</p> <p>Results</p> <p>We analyzed patients with definite NMO (n = 45), HR-NMO (n = 53), ADEM (n = 33), clinically isolated syndromes presenting with myelitis or optic neuritis (CIS, n = 32), MS (n = 71) and controls (n = 101; 24 other neurological diseases-OND, 27 systemic lupus erythematosus-SLE and 50 healthy subjects) for serum IgG to MOG and AQP4. Furthermore, we investigated whether these antibodies can mediate complement dependent cytotoxicity (CDC). AQP4-IgG was found in patients with NMO (n = 43, 96%), HR-NMO (n = 32, 60%) and in one CIS patient (3%), but was absent in ADEM, MS and controls. High-titer MOG-IgG was found in patients with ADEM (n = 14, 42%), NMO (n = 3, 7%), HR-NMO (n = 7, 13%, 5 rON and 2 LETM), CIS (n = 2, 6%), MS (n = 2, 3%) and controls (n = 3, 3%, two SLE and one OND). Two of the three MOG-IgG positive NMO patients and all seven MOG-IgG positive HR-NMO patients were negative for AQP4-IgG. Thus, MOG-IgG were found in both AQP4-IgG seronegative NMO patients and seven of 21 (33%) AQP4-IgG negative HR-NMO patients. Antibodies to MOG and AQP4 were predominantly of the IgG1 subtype, and were able to mediate CDC at high-titer levels.</p> <p>Conclusions</p> <p>We could show for the first time that a subset of AQP4-IgG seronegative patients with NMO and HR-NMO exhibit a MOG-IgG mediated immune response, whereas MOG is not a target antigen in cases with an AQP4-directed humoral immune response.</p

    The SZT2 Interactome Unravels New Functions of the KICSTOR Complex

    Get PDF
    Seizure threshold 2 (SZT2) is a component of the KICSTOR complex which, under catabolic conditions, functions as a negative regulator in the amino acid-sensing branch of mTORC1. Mutations in this gene cause a severe neurodevelopmental and epileptic encephalopathy whose main symptoms include epilepsy, intellectual disability, and macrocephaly. As SZT2 remains one of the least characterized regulators of mTORC1, in this work we performed a systematic interactome analysis under catabolic and anabolic conditions. Besides numerous mTORC1 and AMPK signaling components, we identified clusters of proteins related to autophagy, ciliogenesis regulation, neurogenesis, and neurodegenerative processes. Moreover, analysis of SZT2 ablated cells revealed increased mTORC1 signaling activation that could be reversed by Rapamycin or Torin treatments. Strikingly, SZT2 KO cells also exhibited higher levels of autophagic components, independent of the physiological conditions tested. These results are consistent with our interactome data, in which we detected an enriched pool of selective autophagy receptors/regulators. Moreover, preliminary analyses indicated that SZT2 alters ciliogenesis. Overall, the data presented form the basis to comprehensively investigate the physiological functions of SZT2 that could explain major molecular events in the pathophysiology of developmental and epileptic encephalopathy in patients with SZT2 mutations

    Nogo-A Expression in the Brain of Mice with Cerebral Malaria

    Get PDF
    Cerebral malaria (CM) is associated with a high rate of transient or persistent neurological sequelae. Nogo-A, a protein that is highly expressed in the endoplasmic reticulum (ER) of the mammalian central nervous system (CNS), is involved in neuronal regeneration and synaptic plasticity in the injured CNS. The current study investigates the role of Nogo-A in the course of experimental CM. C57BL/6J mice were infected with Plasmodium berghei ANKA blood stages. Brain homogenates of mice with different clinical severity levels of CM, infected animals without CM and control animals were analyzed for Nogo-A up-regulation by Western blotting and immunohistochemistry. Brain regions with Nogo-A upregulation were evaluated by transmission electron microscopy. Densitometric analysis of Western blots yielded a statistically significant upregulation of Nogo-A in mice showing moderate to severe CM. The number of neurons and oligodendrocytes positive for Nogo-A did not differ significantly between the studied groups. However, mice with severe CM showed a significantly higher number of cells with intense Nogo-A staining in the brain stem. In this region ultrastructural alterations of the ER were regularly observed. Nogo-A is upregulated during the early course of experimental CM. In the brain stem of severely affected animals increased Nogo-A expression and ultrastructural changes of the ER were observed. These data indicate a role of Nogo-A in neuronal stress response during experimental CM

    Human Platelet Lysates Promote the Differentiation Potential of Adipose-Derived Adult Stem Cell Cultures

    No full text
    Adipose tissue from liposuction is a rich source for human mesenchymal stem cells. This type of adult stem cell is ethically acceptable, that paved the way for research on their potential use in regenerative medicine. However, any clinical application of adult stem cells is impeded by the use of FBS as an animal-derived growth supplement. In addition, stem cell cultures gained importance as innovative human-based alternative to animal testing, in vitro toxicology, drug testing and safety assessment. Thus, animal-derived component-free culture protocols are mandatory for a successful application of human stem cell-based testing systems under humanized conditions.Recently, we succeeded in using human platelet lysates (PL) as a serum alternative in the cell culture of a number of human and animal cell lines, and human mesenchymal stem cells. PL were prepared as cell-free extracts from activated donor thrombocytes.The minimal criteria defining multipotent mesenchymal cells are (1) the capacity to adhere to plastic, (2) the expression of specific surface antigens (e.g. CD73, CD90, CD105) for undifferentiated state, and (3) the potential of the cells to differentiate into the adipogenic, chondrogenic and osteogenic lineage. In the present study, adipose-derived stem cells (ADSC) were used as cell model. ADSC were maintained under PL or FBS and then switched to the respective media to induce mesodermal differentiation. Differentiation endpoints were assessed by phase-contrast microscopy and by histochemical staining: (1) lipid droplets in adipocytes were stained by Oil red O, (2) proteoglycans in chondrogenic spheroids were detected by toluidineblue, and fine structure of spheroids was monitored by scanning electron microscopy, and (3) calcium deposits in differentiated osteoblasts were stained with silver nitrate (von Kossa staining). Adipogenic differentiation was further confirmed by quantitative real-time PCR of selected marker genes (PREF1 vs. FABP4). There were no differences between FBS- and PL-grown ADSC, indicative for retention of the differentiation potential of ADSC under animal-derived component-free culture conditions in PL-supplemented culture media. The degree of adipogenic and osteogenic differentiation was even more pronounced under PL compared to FBS
    corecore