4,505 research outputs found

    Modelling diverse root density dynamics and deep nitrogen uptake — a simple approach

    Get PDF
    We present a 2-D model for simulation of root density and plant nitrogen (N) uptake for crops grown in agricultural systems, based on a modification of the root density equation originally proposed by Gerwitz and Page in J Appl Ecol 11:773–781, (1974). A root system form parameter was introduced to describe the distribution of root length vertically and horizontally in the soil profile. The form parameter can vary from 0 where root density is evenly distributed through the soil profile, to 8 where practically all roots are found near the surface. The root model has other components describing root features, such as specific root length and plant N uptake kinetics. The same approach is used to distribute root length horizontally, allowing simulation of root growth and plant N uptake in row crops. The rooting depth penetration rate and depth distribution of root density were found to be the most important parameters controlling crop N uptake from deeper soil layers. The validity of the root distribution model was tested with field data for white cabbage, red beet, and leek. The model was able to simulate very different root distributions, but it was not able to simulate increasing root density with depth as seen in the experimental results for white cabbage. The model was able to simulate N depletion in different soil layers in two field studies. One included vegetable crops with very different rooting depths and the other compared effects of spring wheat and winter wheat. In both experiments variation in spring soil N availability and depth distribution was varied by the use of cover crops. This shows the model sensitivity to the form parameter value and the ability of the model to reproduce N depletion in soil layers. This work shows that the relatively simple root model developed, driven by degree days and simulated crop growth, can be used to simulate crop soil N uptake and depletion appropriately in low N input crop production systems, with a requirement of few measured parameters

    Influence of Pure Dephasing on Emission Spectra from Single Photon Sources

    Get PDF
    We investigate the light-matter interaction of a quantum dot with the electromagnetic field in a lossy microcavity and calculate emission spectra for non-zero detuning and dephasing. It is found that dephasing shifts the intensity of the emission peaks for non-zero detuning. We investigate the characteristics of this intensity shifting effect and offer it as an explanation for the non-vanishing emission peaks at the cavity frequency found in recent experimental work.Comment: Published version, minor change

    Imaging Oxygen Distribution in Marine Sediments. The Importance of Bioturbation and Sediment Heterogeneity

    Get PDF
    The influence of sediment oxygen heterogeneity, due to bioturbation, on diffusive oxygen flux was investigated. Laboratory experiments were carried out with 3 macrobenthic species presenting different bioturbation behaviour patterns:the polychaetes Nereis diversicolor and Nereis virens, both constructing ventilated galleries in the sediment column, and the gastropod Cyclope neritea, a burrowing species which does not build any structure. Oxygen two-dimensional distribution in sediments was quantified by means of the optical planar optode technique. Diffusive oxygen fluxes (mean and integrated) and a variability index were calculated on the captured oxygen images. All species increased sediment oxygen heterogeneity compared to the controls without animals. This was particularly noticeable with the polychaetes because of the construction of more or less complex burrows. Integrated diffusive oxygen flux increased with oxygen heterogeneity due to the production of interface available for solute exchanges between overlying water and sediments. This work shows that sediment heterogeneity is an important feature of the control of oxygen exchanges at the sediment–water interface

    Laser-induced Coulomb explosion of heteronuclear alkali dimers on helium nanodroplets

    Full text link
    A sample mixture of alkali homonuclear dimers, Ak2_2 and Ak2^{\prime}_2 and heteronuclear dimers, AkAk^{\prime}, residing on the surface of helium nanodroplets are Coulomb exploded into pairs of atomic alkali cations, (Ak+^{+},Ak+^{+}), (Ak+^{\prime +},Ak+^{\prime +}), (Ak+^{+}, Ak+^{\prime +}), following double ionization induced by an intense 50 fs laser pulse. The measured kinetic energy distribution P(Ekin)P(E_{\text{kin}}) of both the Ak+^{+} and the Ak+^{\prime +} fragment ions contains overlapping peaks due to contributions from Coulomb explosion of the homonuclear and the heteronuclear dimers. Using a coincident filtering method based on the momentum division between the two fragment ions in each Coulomb explosion event, we demonstrate that the individual P(Ekin)P(E_{\text{kin}}) pertaining to the ions from either the heteronuclear or from the homonuclear dimers can be retrieved, for both the Ak+^{+} and for the Ak+^{\prime +} fragment ions. This filtering method works through the concurrent detection of two-dimensional velocity images of the Ak+^{+} and the Ak+^{\prime +} ions implemented through the combination of a velocity map imaging spectrometer and a TPX3CAM detector. The key finding is that P(Ekin)P(E_{\text{kin}}) for heteronuclear alkali dimers can be distinguished despite the simultaneous presence of homonuclear dimers. From P(Ekin)P(E_{\text{kin}}) we determine the distribution of internuclear distances P(R)P(R) via the Coulomb explosion imaging principle. We report results for LiK and for NaK but our method should should also work for other heteronuclear dimers and for differentiating between different isotopologues of homonuclear dimers.Comment: 10 pages, 11 figure

    Resolving the shocked gas in HH54 with Herschel: CO line mapping at high spatial and spectral resolution

    Get PDF
    The HH54 shock is a Herbig-Haro object, located in the nearby Chamaeleon II cloud. Observed CO line profiles are due to a complex distribution in density, temperature, velocity, and geometry. Resolving the HH54 shock wave in the far-infrared cooling lines of CO constrain the kinematics, morphology, and physical conditions of the shocked region. We used the PACS and SPIRE instruments on board the Herschel space observatory to map the full FIR spectrum in a region covering the HH54 shock wave. Complementary Herschel-HIFI, APEX, and Spitzer data are used in the analysis as well. The observed features in the line profiles are reproduced using a 3D radiative transfer model of a bow-shock, constructed with the Line Modeling Engine code (LIME). The FIR emission is confined to the HH54 region and a coherent displacement of the location of the emission maximum of CO with increasing J is observed. The peak positions of the high-J CO lines are shifted upstream from the lower J CO lines and coincide with the position of the spectral feature identified previously in CO(10-9) profiles with HIFI. This indicates a hotter molecular component in the upstream gas with distinct dynamics. The coherent displacement with increasing J for CO is consistent with a scenario where IRAS12500-7658 is the exciting source of the flow, and the 180 K bow-shock is accompanied by a hot (800 K) molecular component located upstream from the apex of the shock and blueshifted by -7 km s1^{-1}. The spatial proximity of this knot to the peaks of the atomic fine-structure emission lines observed with Spitzer and PACS ([OI]63, 145 μ\mum) suggests that it may be associated with the dissociative shock as the jet impacts slower moving gas in the HH54 bow-shock.Comment: 6 pages, 5 figure

    Rigged Hilbert Space Approach to the Schrodinger Equation

    Full text link
    It is shown that the natural framework for the solutions of any Schrodinger equation whose spectrum has a continuous part is the Rigged Hilbert Space rather than just the Hilbert space. The difficulties of using only the Hilbert space to handle unbounded Schrodinger Hamiltonians whose spectrum has a continuous part are disclosed. Those difficulties are overcome by using an appropriate Rigged Hilbert Space (RHS). The RHS is able to associate an eigenket to each energy in the spectrum of the Hamiltonian, regardless of whether the energy belongs to the discrete or to the continuous part of the spectrum. The collection of eigenkets corresponding to both discrete and continuous spectra forms a basis system that can be used to expand any physical wave function. Thus the RHS treats discrete energies (discrete spectrum) and scattering energies (continuous spectrum) on the same footing.Comment: 27 RevTex page

    Bias and temperature dependence of the 0.7 conductance anomaly in Quantum Point Contacts

    Full text link
    The 0.7 (2e^2/h) conductance anomaly is studied in strongly confined, etched GaAs/GaAlAs quantum point contacts, by measuring the differential conductance as a function of source-drain and gate bias as well as a function of temperature. We investigate in detail how, for a given gate voltage, the differential conductance depends on the finite bias voltage and find a so-called self-gating effect, which we correct for. The 0.7 anomaly at zero bias is found to evolve smoothly into a conductance plateau at 0.85 (2e^2/h) at finite bias. Varying the gate voltage the transition between the 1.0 and the 0.85 (2e^2/h) plateaus occurs for definite bias voltages, which defines a gate voltage dependent energy difference Δ\Delta. This energy difference is compared with the activation temperature T_a extracted from the experimentally observed activated behavior of the 0.7 anomaly at low bias. We find \Delta = k_B T_a which lends support to the idea that the conductance anomaly is due to transmission through two conduction channels, of which the one with its subband edge \Delta below the chemical potential becomes thermally depopulated as the temperature is increased.Comment: 9 pages (RevTex) with 9 figures (some in low resolution
    corecore