5,721 research outputs found
Origin of the wide-angle hot H2 in DG Tauri: New insight from SINFONI spectro-imaging
We wish to test the origins proposed for the extended hot H2 at 2000K around
the atomic jet from the T Tauri star DGTau, in order to constrain the
wide-angle wind structure and the possible presence of an MHD disk wind. We
present flux calibrated IFS observations in H2 1-0 S(1) obtained with
SINFONI/VLT. Thanks to spatial deconvolution by the PSF and to accurate
correction for uneven slit illumination, we performed a thorough analysis and
modeled the morphology, kinematics, and surface brightness. We also compared
our results with studies in [FeII], [OI], and FUV-pumped H2. The
limb-brightened H2 emission in the blue lobe is strikingly similar to
FUV-pumped H2 imaged 6yr later, confirming that they trace the same hot gas and
setting an upper limit of 12km/s on any expansion proper motion. The wide-angle
H2 rims are at lower blueshifts than probed by narrow long-slit spectra. We
confirm that they extend to larger angle and to lower speed the onion-like
velocity structure observed in optical atomic lines. The latter is shown to be
steady over more/equal than 4yr but undetected in [FeII] by SINFONI, probably
due to strong iron depletion. The H2 rim thickness less/equal than 14AU rules
out excitation by C-shocks, and J-shock speeds are constrained to 10km/s. We
find that explaining the H2 wide-angle emission with a shocked layer requires
either a recent outburst (15yr) into a pre-existing ambient outflow or an
excessive wind mass flux. A slow photoevaporative wind from the dense
irradiated disk surface and an MHD disk wind heated by ambipolar diffusion seem
to be more promising and need to be modeled in more detail
Effect of grazing white clover pasture on milk composition of Holstein and Jersey cows
Because of its high saturated fatty acid (FA) content milk fat is considered hypercholesterolemic. Intake of unsaturated FA (UFA) reduces the plasma cholesterol concentrations. Especially conjugated linoleic acids (CLA) have shown positive effects on cardiovascular diseases, prevention of cancer and obesity. The aim of our project is to investigate how grazing can enhance the content of these beneficiary FA in milk. For bith types of cow races we observed no direct effect of increased grazing in the diet on the short chain FA (SCFA) content in milk, implying that the de novo synthesis of these FA remained unaffected. Regarding the content of CLA c9,t11 there was a strong positive effect on Holstein milk (R2 = 0,88), but almost none on Jersey milk when the percentage of grazing increases in the diet, thus suggesting that the mammary gland D9-desaturase acitivities of these two cow races react differently to increasing pasture grazing
Far infrared CO and HO emission in intermediate-mass protostars
Intermediate-mass young stellar objects (YSOs) provide a link to understand
how feedback from shocks and UV radiation scales from low to high-mass star
forming regions. Aims: Our aim is to analyze excitation of CO and HO in
deeply-embedded intermediate-mass YSOs and compare with low-mass and high-mass
YSOs. Methods: Herschel/PACS spectral maps are analyzed for 6 YSOs with
bolometric luminosities of . The maps
cover spatial scales of AU in several CO and HO lines located
in the m range. Results: Rotational diagrams of CO show two
temperature components at K and
K, comparable to low- and high-mass protostars
probed at similar spatial scales. The diagrams for HO show a single
component at K, as seen in low-mass protostars, and
about K lower than in high-mass protostars. Since the uncertainties in
are of the same order as the difference between the
intermediate and high-mass protostars, we cannot conclude whether the change in
rotational temperature occurs at a specific luminosity, or whether the change
is more gradual from low- to high-mass YSOs. Conclusions: Molecular excitation
in intermediate-mass protostars is comparable to the central AU of
low-mass protostars and consistent within the uncertainties with the high-mass
protostars probed at AU scales, suggesting similar shock
conditions in all those sources.Comment: Accepted to Astronomy & Astrophysics. 4 pages, 5 figures, 3 table
ALMA CO J=6-5 observations of IRAS16293-2422: Shocks and entrainment
Observations of higher-excited transitions of abundant molecules such as CO
are important for determining where energy in the form of shocks is fed back
into the parental envelope of forming stars. The nearby prototypical and
protobinary low-mass hot core, IRAS16293-2422 (I16293) is ideal for such a
study. The source was targeted with ALMA for science verification purposes in
band 9, which includes CO J=6-5 (E_up/k_B ~ 116 K), at an unprecedented spatial
resolution (~0.2", 25 AU). I16293 itself is composed of two sources, A and B,
with a projected distance of 5". CO J=6-5 emission is detected throughout the
region, particularly in small, arcsecond-sized hotspots, where the outflow
interacts with the envelope. The observations only recover a fraction of the
emission in the line wings when compared to data from single-dish telescopes,
with a higher fraction of emission recovered at higher velocities. The very
high angular resolution of these new data reveal that a bow shock from source A
coincides, in the plane of the sky, with the position of source B. Source B, on
the other hand, does not show current outflow activity. In this region, outflow
entrainment takes place over large spatial scales, >~ 100 AU, and in small
discrete knots. This unique dataset shows that the combination of a
high-temperature tracer (e.g., CO J=6-5) and very high angular resolution
observations is crucial for interpreting the structure of the warm inner
environment of low-mass protostars.Comment: Accepted for publication in A&A Letter
Catch Crops in Organic Farming Systems without Livestock Husbandry - Model Simulations
During the last years, an increasing number of stockless farms in Europe converted to organic farming practice without re-establishing a livestock. Due to the lack of animal manure as a nutrient input, the relocation and the external input of nutrients is limited in those organic cropping systems. The introduction of a one-year green manure fallow in a 4-year crop rotation, including clover-grass mixtures as a green manure crop is the classical strategy to solve at least some of the problems related to the missing livestock. The development of new crop rotations, including an extended use of catch crops and annual green manure (legumes) may be another possibility avoiding the economical loss during the fallow year.
Modelling of the C and N turnover in the soil-plant-atmosphere system using the soil-plant-atmosphere model DAISY is one of the tools used for the development of new organic crop rotations. In this paper, we will present simulations based on a field experiment with incorporation of different catch crops.
An important factor for the development of new crop rotations for stockless organic farming systems is the expected N mineralisation and immobilisation after incorporation of the plant materials. Therefore, special emphasise will be put on the simulation of N-mineralisation/-immobilisation and of soil microbial biomass N. Furthermore, particulate organic matter C and N as an indicator of remaining plant material under decomposition will be investigated
Levitated droplet dye laser
We present the first observation, to our knowledge, of lasing from a
levitated, dye droplet. The levitated droplets are created by computer
controlled pico-liter dispensing into one of the nodes of a standing ultrasonic
wave (100 kHz), where the droplet is trapped. The free hanging droplet forms a
high quality optical resonator. Our 750 nL lasing droplets consist of Rhodamine
6G dissolved in ethylene glycol, at a concentration of 0.02 M. The droplets are
optically pumped at 532 nm light from a pulsed, frequency doubled Nd:YAG laser,
and the dye laser emission is analyzed by a fixed grating spectrometer. With
this setup we have achieved reproducible lasing spectra in the visible
wavelength range from 610 nm to 650 nm. The levitated droplet technique has
previously successfully been applied for a variety of bio-analytical
applications at single cell level. In combination with the lasing droplets, the
capability of this high precision setup has potential applications within
highly sensitive intra-cavity absorbance detection.Comment: 6 pages including 3 figure
Preparation of ultracold atom clouds at the shot noise level
We prepare number stabilized ultracold clouds through the real-time analysis
of non-destructive images and the application of feedback. In our experiments,
the atom number is determined by high precision Faraday imaging
with uncertainty below the shot noise level, i.e., . Based on this measurement, feedback is applied to reduce the atom
number to a user-defined target, whereupon a second imaging series probes the
number stabilized cloud. By this method, we show that the atom number in
ultracold clouds can be prepared below the shot noise level.Comment: Main text: 4 Figures, 4 pages. Supplemental Information: 4 figures, 5
page
- …