4 research outputs found
In Vivo Requirement of the RNA Polymerase II Elongation Factor Elongin A for Proper Gene Expression and Development
A number of transcription factors that increase the catalytic rate of mRNA synthesis by RNA polymerase II (Pol II) have been purified from higher eukaryotes. Among these are the ELL family, DSIF, and the heterotrimeric elongin complex. Elongin A, the largest subunit of the elongin complex, is the transcriptionally active subunit, while the smaller elongin B and C subunits appear to act as regulatory subunits. While much is known about the in vitro properties of elongin A and other members of this class of elongation factors, the physiological role(s) of these proteins remain largely unclear. To elucidate in vivo functions of elongin A, we have characterized its Drosophila homologue (dEloA). dEloA associates with transcriptionally active puff sites within Drosophila polytene chromosomes and exhibits many of the expected biochemical and cytological properties consistent with a Pol II-associated elongation factor. RNA interference-mediated depletion of dEloA demonstrated that elongin A is an essential factor that is required for proper metamorphosis. Consistent with this observation, dEloA expression peaks during the larval stages of development, suggesting that this factor may be important for proper regulation of developmental events during these stages. The discovery of the role of elongin A in an in vivo model system defines the novel contribution played by RNA polymerase II elongation machinery in regulation of gene expression that is required for proper development
\u3ci\u3eDrosophila\u3c/i\u3e Muller F Elements Maintain a Distinct Set of Genomic Properties Over 40 Million Years of Evolution
The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu