34 research outputs found

    Current Hypotheses on How Microsatellite Instability Leads to Enhanced Survival of Lynch Syndrome Patients

    Get PDF
    High levels of microsatellite instability (MSI-high) are a cardinal feature of colorectal tumors from patients with Lynch Syndrome. Other key characteristics of Lynch Syndrome are that these patients experience fewer metastases and have enhanced survival when compared to patients diagnosed with microsatellite stable (MSS) colorectal cancer. Many of the characteristics associated with Lynch Syndrome including enhanced survival are also observed in patients with sporadic MSI-high colorectal cancer. In this review we will present the current state of knowledge regarding the mechanisms that are utilized by the host to control colorectal cancer in Lynch Syndrome and why these same mechanisms fail in MSS colorectal cancers

    Exosomal miRNAs: Biological Properties and Therapeutic Potential

    Get PDF
    MicroRNAs (miRNAs), small non-coding regulatory RNAs that regulate gene expression at the post-transcriptional level, are master regulators of a wide array of cellular processes. Altered miRNA expression could be a determinant of disease development and/or progression and manipulation of miRNA expression represents a potential avenue of therapy. Exosomes are cell-derived extracellular vesicles that promote cell–cell communication and immunoregulatory functions. These “bioactive vesicles” shuttle various molecules, including miRNAs, to recipient cells. Inappropriate release of miRNAs from exosomes may cause significant alterations in biological pathways that affect disease development, supporting the concept that miRNA-containing exosomes could serve as targeted therapies for particular diseases. This review briefly summarizes recent advances in the biology, function, and therapeutic potential of exosomal miRNAs

    Quasi-particle model for lattice QCD: quark-gluon plasma in heavy ion collisions

    Full text link
    We propose a quasi-particle model to describe the lattice QCD equation of state for pure SU(3) gauge theory in its deconfined state, for T1.5TcT \ge 1.5T_c. The method involves mapping the interaction part of the equation of state to an effective fugacity of otherwise non-interacting quasi-gluons. We find that this mapping is exact. Using the quasi-gluon distribution function, we determine the energy density and the modified dispersion relation for the single particle energy, in which the trace anomaly is manifest. As an application, we first determine the Debye mass, and then the important transport parameters, {\it viz}, the shear viscosity, η\eta and the shear viscosity to entropy density ratio, η/S\eta/{\mathcal S}. We find that both η\eta and η/S\eta/{\mathcal S} are sensitive to the interactions, and that the interactions significantly lower both η\eta and η/S\eta/\mathcal S.Comment: 10 pages, 8 figures, epj class file, version accepted for publication in Euro. Phys.J

    miR-16 Targets Transcriptional Corepressor SMRT and Modulates NF-kappaB-Regulated Transactivation of Interleukin-8 Gene

    Get PDF
    The signaling pathways associated with the Toll-like receptors (TLRs) and nuclear factor-kappaB (NF-κB) are essential to pro-inflammatory cytokine and chemokine expression, as well as initiating innate epithelial immune responses. The TLR/NF-κB signaling pathways must be stringently controlled through an intricate network of positive and negative regulatory elements. MicroRNAs (miRNAs) are non-coding small RNAs that regulate the stability and/or translation of protein-coding mRNAs. Herein we report that miR-16 promotes NF-κB-regulated transactivation of the IL-8 gene by suppression of the silencing mediator for retinoid and thyroid hormone receptor (SMRT). LPS stimulation activated miR-16 gene transcription in human monocytes (U937) and biliary epithelial cells (H69) through MAPK-dependent mechanisms. Transfection of cells with the miR-16 precursor promoted LPS-induced production of IL-8, IL-6, and IL-1α, without a significant effect on their RNA stability. Instead, an increase in NF-κB-regulated transactivation of the IL-8 gene was confirmed in cells following transfection of miR-16 precursor. Importantly, miR-16 targeted the 3′-untranslated region of SMRT and caused translational suppression of SMRT. LPS decreased SMRT expression via upregulation of miR-16. Moreover, functional manipulation of SMRT altered NF-κB-regulated transactivation of LPS-induced IL-8 expression. These data suggest that miR-16 targets SMRT and modulates NF-κB-regulated transactivation of the IL-8 gene

    NF-kappaB p65-Dependent Transactivation of miRNA Genes following Cryptosporidium parvum Infection Stimulates Epithelial Cell Immune Responses

    Get PDF
    Cryptosporidium parvum is a protozoan parasite that infects the gastrointestinal epithelium and causes diarrheal disease worldwide. Innate epithelial immune responses are key mediators of the host's defense to C. parvum. MicroRNAs (miRNAs) regulate gene expression at the posttranscriptional level and are involved in regulation of both innate and adaptive immune responses. Using an in vitro model of human cryptosporidiosis, we analyzed C. parvum-induced miRNA expression in biliary epithelial cells (i.e., cholangiocytes). Our results demonstrated differential alterations in the mature miRNA expression profile in cholangiocytes following C. parvum infection or lipopolysaccharide stimulation. Database analysis of C. parvum-upregulated miRNAs revealed potential NF-κB binding sites in the promoter elements of a subset of miRNA genes. We demonstrated that mir-125b-1, mir-21, mir-30b, and mir-23b-27b-24-1 cluster genes were transactivated through promoter binding of the NF-κB p65 subunit following C. parvum infection. In contrast, C. parvum transactivated mir-30c and mir-16 genes in cholangiocytes in a p65-independent manner. Importantly, functional inhibition of selected p65-dependent miRNAs in cholangiocytes increased C. parvum burden. Thus, we have identified a panel of miRNAs regulated through promoter binding of the NF-κB p65 subunit in human cholangiocytes in response to C. parvum infection, a process that may be relevant to the regulation of epithelial anti-microbial defense in general

    5′ terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart

    Get PDF
    AbstractEnteroviruses can induce human myocarditis, which can be modeled in mice inoculated with group B coxsackieviruses (CVB) and in which CVB evolve to produce defective, terminally deleted genomes. The 5′ non-translated region (NTR) was enzymatically amplified from heart tissue of a fatal case of enterovirus-associated myocarditis in Japan in 2002. While no intact 5′ viral genomic termini were detected, 5′ terminal deletions ranged in size from 22 to 36 nucleotides. Sequence of the 5′ third of this viral genome is of a modern strain, closely related to CVB2 strains isolated in Japan in 2002. A CVB3 chimera containing the 5′ NTR with a 22 nt deletion produced progeny virus upon transfection of HeLa cells. When the 5′ 22 nucleotide deletion was repaired, the virus induced myocarditis in mice and replicated like wild type virus in murine heart cells. This is the first report of these naturally-occurring defective enteroviral genomes in human myocarditis

    Group B Coxsackievirus Diabetogenic Phenotype Correlates with Replication Efficiency

    No full text
    Group B coxsackieviruses can initiate rapid onset type 1 diabetes (T1D) in old nonobese diabetic (NOD) mice. Inoculating high doses of poorly pathogenic CVB3/GA per mouse initiated rapid onset T1D. Viral protein was detectable in islets shortly after inoculation in association with beta cells as well as other primary islet cell types. The virulent strain CVB3/28 replicated to higher titers more rapidly than CVB3/GA in the pancreas and in established beta cell cultures. Exchange of 5′-nontranslated regions between the two CVB3 strains demonstrated a variable impact on replication in beta cell cultures and suppression of in vivo replication for both strains. While any CVB strain may be able to induce T1D in prediabetic NOD mice, T1D onset is linked both to the viral replication rate and infectious dose
    corecore