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Enteroviruses can induce human myocarditis, which can be modeled in mice inoculated with group B
coxsackieviruses (CVB) and in which CVB evolve to produce defective, terminally deleted genomes. The 5′ non-
translated region (NTR) was enzymatically amplified from heart tissue of a fatal case of enterovirus-associated
myocarditis in Japan in2002.While no intact 5′ viral genomic terminiwere detected, 5′ terminal deletions ranged
in size from22 to 36nucleotides. Sequence of the 5′ third of this viral genome is of amodern strain, closely related
to CVB2 strains isolated in Japan in 2002. A CVB3 chimera containing the 5′ NTR with a 22 nt deletion produced
progeny virus upon transfection of HeLa cells.When the 5′ 22nucleotide deletionwas repaired, the virus induced
myocarditis in mice and replicated like wild type virus in murine heart cells. This is the first report of these
naturally-occurring defective enteroviral genomes in human myocarditis.

© 2008 Elsevier Inc. All rights reserved.
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Introduction

The group B coxsackieviruses (CVB, serotypes 1–6) are typical human
enteroviruses (HEV) classifiedwithinHEV species B (Stanwayet al., 2005).
The genome is a single molecule of positive sense RNA, encoding 11
proteins from within a single open reading frame (ORF). The ORF is
flanked on both the 5′ and 3′ ends by non-translated regions (NTR)
(Racaniello, 2007) with both NTRs essential for maximal virus replication
(Brown et al., 2004). Numerous studies in which either the 5′ or 3′ NTR
wasalteredbyexperimentalmutationalordeletional analysishave shown
that viral replication is deleteriously, usually lethally, affected (Barton
et al., 2001; Brown et al., 2005; Murray et al., 2004; Trono et al., 1988).

Myocarditis (inflammation of the heart muscle) has been frequently
associated with an HEV etiology (Kim et al., 2002). Acute myocarditis is
believed to be a precursor to dilated cardiomyopathy [DCM; (Mason,
2003; Spotnitz and Lesch, 2006)], a serious disease that can lead to death
in lieuof transplantation.HumanenteroviralRNAhas alsobeendetected
indilated cardiomyopathic hearts and inmyocarditic hearts (Andreoletti
et al., 2000; Archard et al., 1998; Bowles et al., 1989; Kammerer et al.,
1994; Rey et al., 2001; Satoh et al., 1994; Tracy et al., 1990). Despite the
detection of HEV RNA in adult myocarditis and DCM, there has been a
near complete inability to isolate infectious enterovirus in cell culture
from these tissues (Rey et al., 2001) with only rare reports in the
literature (Longson et al.,1969;Monaldi et al.,1963; Soutar,1971). This is
an).
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quite different from HEV-associated pediatric myocarditis in which
infectious virus can usually be readily isolated (Fechner et al.,1963; Gear
and Measroch, 1973; Piraino et al., 1982; Porres et al., 1985). Similar
observations have been made in mouse models of myocarditis (Gauntt
and Huber, 2003; Kim et al., 2001; Woodruff, 1980), in which viral RNA
can often be detected in heart tissue of mice experimentally inoculated
with CVB3 long after lytic virus is not detectable using cell culture (Kim
et al., 2005; Klingel et al., 1992; Reetoo et al., 2000).

The likely mechanism underlying the disparity between the detec-
tion of enteroviral RNA in theabsence of culturable virus,wasdiscovered
by studyingCVB infections in themouse heart (Kimet al., 2005). In these
studies, following inoculation of mice with CVB3, heart tissue was
screened at various timespost-infection for infectious virus.When these
viral RNA populations were examined, no intact 5′ genomic termini
were detected and a variety of deletions existedwith sizes ranging from
7 to 49 nt in length. These 5′ terminal deletions (TD) had profound
impacts upon the viral biology. As virus replication was so slowed that
cytopathic effects (cpe) were not observed, virus titers had to be quan-
titated by RT-mediated qPCR analysis of RNA genomes in infected cells.
Measurements of the positive to negative strand viral RNA ratio in
infected cell cultures showed them to be close to unity rather than the
highpositive to negative ratios normally seen inwild type virus-infected
cells (Kim et al., 2005). Interestingly, this finding extended into virion-
encapsidated RNA as well, with CsCl-purified virion preparations
showing the presence of negative aswell as positive strand RNA. Clearly,
packaging of negative strand RNA which cannot be translated upon
infection of a cell, also served to enhance the attenuation of replication
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brought about by the TD state. Recently, we have demonstrated that
similar TDmutations canoccur inprimarycell cultures (Kimet al., 2008).
These findings have defined a novel and unsuspected aspect of HEV
biology.

We were curious, therefore, to test the hypothesis that TD muta-
tions occurring naturally during HEV replication in the human could
similarly be associated with human heart disease in the absence of a
detectable cytopathic virus population. Oka et al. published a case
Fig. 1. Enterovirus protein in heart from case of fulminant myocarditis. Serial sections of form
with an isotype negative control antibody (C, E), or with an antibody against a conserved epit
the HEV capsid antibody as a negative control (G, H). Original magnification, ×40 (A), ×100
report on two patients with fulminant myocarditis (Oka et al., 2005),
one of whom showed evidence of enterovirus involvement. We used
formalin-fixed, paraffin-embedded heart tissue from this adult case of
fatal, HEV-associated myocarditis in Japan in 2002, to demonstrate
that TD genomes with deletions of up to 36 nt were detected in the
myocardium in the absence of detectable wild type viral genomes.
Sequence analysis of the 5′ third of the genome identified the virus as
a CVB2 with high identity to CVB2 strains circulating in Japan in 2002.
alin-fixed, paraffin-embedded heart were stained with hematoxylin and eosin (A, B), or
ope in HEV capsid protein VP1 (D, F). A non-infected human heart was also stained with
(B–D, G), ×200 (E, F, H). Arrows in D and F indicate the same position.
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To our knowledge, this is the first report to show that HEV TD genomes
can also naturally occur in human beings. As persistent expression
of CVB proteins and 2Aprotease alone are sufficient for induction of
cardiomyopathy in the mouse (Wessely et al., 1998a; Xiong et al.,
2007) and as detection of CVB TD genomes in a diseased human heart
disease is likely due to persistent, defective HEV replication (Chapman
and Kim, 2008), there is now a mechanism to link of acute viral
myocarditis with postviral DCM (Mason, 2003; Spotnitz and Lesch,
2006).

Results

Extent of myocarditis and enterovirus infection in the heart muscle

In 2002, an adultmale died ofmyocarditis inMito, Japan; the details
of this enterovirus-associated fatal adult myocarditis case have been
described previously (Oka et al., 2005). Using formaldehyde-fixed,
paraffin-embedded heart muscle samples from which to cut sections,
we used immunohistochemistry to confirm and extend an earlier
work (Oka et al., 2005) that enteroviral capsid protein was detectable
in the tissue. Diffused lymphocytic infiltrates were observed through-
out sections from all tissue samples used in this study together
with localized myocarditic lesions and muscle damage (Fig. 1A,B),
consistent with the published diagnosis of fulminant myocarditis
(Oka et al., 2005). Immunohistochemical staining for HEV capsid
protein VP1 demonstrated widespread infection in the heart muscle
(Fig. 1D, F). Detection of viral protein was adjacent to but seldom
Table 1

Primer a Genomic location a, strand b

Primers for detection of cDNA
E1 644–627, −
E2 450–464, +
E3 563–537, −
E3Sub 549–535, −
E3REV 537–562, +
E5 378–361, −
S 1–20, +
S1ENTB 1–25, +
S2ENTB 21–46, +
S3ENTB 33–58, +
S4ENTB 50–79, +

Primers for generation of cDNA
With E1
E8 65–82, +

With E2
DREVENTB 764–745, −

With Mito5NTR 644–672, +
VP4REV 1046–1025, −

With MitoVP4 916–942, +
VP2REVC 1537–1514, −

With MitoVP4
VP2REVA 1582–1557, −

With MitoVP2 1444–1468, +
CVB2VP1REV 2605–2582, −

Primers for cloning
22RIBOZ1 22–44, +
22RIBOZ2
TD22RIBOZPCRT7
DREV 764–745, −
ENTBCONSENSUS 1–42, +
28RIBOZ1 1–20, +
28RIBOZ2
28RIBOZPCRT7

a Numbering as in CVB3/28 (GenBank accession no. AY752944).
b Positive is same sense as genomic RNA, negative is antisense to genomic RNA.
c Underlined sequence is not genomic cDNA in cloning primers.
overlapped the localized inflammatory infiltrates, a finding that has
been observed previously by others in cases of HEV-associated
myocarditis and DCM (Zhang et al., 2000) as well as in persistent
viral infections in a murine model of CVB1-induced myositis (Tam
et al., 1991). Immunohistochemical stainings of sections from a cli-
nically normal human heart sample (Fig. 1G,H) for HEV capsid protein
VP1 were negative.

Detection of 5′ terminal deletions in the viral RNA in the myocarditic
heart muscle

We tested for the presence of deleted 5′ termini in RNA samples
derived from heart sections that had been initially assayed for the
presence of HEV RNA using enterovirus B specific primers (Table 1)
designed from conserved sequences [data not shown, (Chapman et al.,
1990)]. Complementary DNA (cDNA) generated from total heart RNA
using the conserved HEV primer E1 (Chapman et al., 1990) was used for
PCR amplification with primers specific for 5′ terminal sequences of
HEV-B cDNA and the primer E3Sub (Table 1). The orientation of these
primers and locationwithin the genericHEV5′non-translated region (5′
NTR) is outlined in Fig. 2A. Each of the 5′ terminus primers amplified
cDNA from the wild type CVB3/28 positive control RNA (Fig. 2B).
However, only S3EntB (nt 33–58) and S4EntB (nt 50–79) efficiently
amplified sequences in the heart cDNA (Fig. 2B), although aweak signal
was obtained using S2ENTB (nt 21–46). The inability to amplify heart
cDNA with primers S and S1ENTB (nt 1–25) and only weakly using a
primer located further in from the 5′ end (S2ENTB), recalled previous
Nucleotide sequence (5′ to 3′) c

CACCGGATGGCCAATCCA
TCCGGCCCCTGAATG
ACACGGACACCCAAAGTAGTCGGTTCC
AGTAGTCGGTTCCGC
GGAACCGACTACTTTGGGTGTCCGTG
GCAGGCCGCCAACGCAGC
TTAAAACAGCCTGTGGGTTG
TTAAAACAGCCTGTGGGTTGTTCCC
TTCCCACCCACAGGGCCCACTGGGCG
GGGCCCACTGGGCGCTAGCACTCTGG
GCACTCTGGTATCACGGTACCTTTGTGCGC

GGTACCTTTGTGCGCCTG

GCGTTGACACTTGAGCTCCC
GACCAATAGAGCGATCGTCTATCTATTTG
CGACCACATTGGCACACTCTTG
GGACATTATGATAAARTCTATG
GGTGCGCAAGTTKATCCACTGRTG

GGCACACTGTTTATRTATGGCATBAC
GACCGATGTCCAAACTGCAGTGTGC
CTGGTTTGCATCGTRTCACTRGG

ATGAGGCCGAAAGGCCGAAAACCCGGTATCCCGGGTTCCCCACCCACAGGGCCCACTGGGC
CACTATAGGGCGCGGGTGGGTGGGCTGATGAGGCCGAAAGGCCGAAAACCCGGTATC
GACCGCGGCCGCGTAATACGACTCACTATAGGGCGCGGGTGGGTGGGCTGATGAGG
GCGTTGATACTTGAGCTCCC
TTAAAACAGCCTGTGGGTTGTTCCCACCCACAGGGCCCACTG
TGAGGCCGAAAGGCCGAAAACCCGGTATCCCGGGTTCTTAAAACAGCCTGTGGGTTG
GACACTGATCCGCGGGTGTTTTAACTGATGAGGCCGAAAGGCCGAAAACCCGGTATC
GACCGCGGCCGCGTAATACGACTCACTATAGGGCGCGGGTGTTTTAACTGATGAGG



Fig. 2. cDNA from humanmyocarditic heart was not amplifiedwith 5′ terminal enterovirus-specific primers. (A) Orientation of primers within the 5′NTR. (B) E1-primed cDNA of total
RNA from human myocarditic heart or purified CVB3/28 was amplified with 5′ terminal primers S, S1ENTB-S4ENTB and E3Sub in separate PCRs and then electrophoresed in 1.5%
agarose. M, 100 bp ladder (Invitrogen); −, PCR with S and E3Sub without template; +, PCR with S and E3Sub with pCVB3/28. Abbreviations for S1EntB-S4 EntB are S1–S4. Arrow
indicates 600 bp band. (C) Alignment of the 5′ terminal sequences of CVB2/Mito with the enterovirus B consensus sequence. Three sizes of 5′ terminal deletions were cloned and
sequenced (22, 25 and 36 nt). Numbering begins from the 5′ terminus. Asterisks indicate positions of previous terminal deletions detected in hearts of mice (Kim et al., 2005) and in
cell culture passage (Kim et al., 2008).
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results obtained from mouse hearts (Kim et al., 2005) and cell cultures
(Kim et al., 2008) that indicated 5′ terminal sequences were missing
from the viral RNA.

We then tested directly for 5′ terminal deletions using sequence
analysis. Heart cDNA primed with E1 was tailed with dG10, amplified
with E5 and a primer specific for the oligo dG tail [DC-Tail which has a 3′
oligo dC10; (Kim et al., 2005)], and cloned. Only four unique clones were
obtained due to the low yield of tailed cDNA. Two clones showed
deletionsof the 5′nt1–22, onehadnt1–24deleted, andonehadnt1–35
deleted relative to consensus5′ terminal sequencederived from90HEV-
B 5′ terminal sequences in the GenBank database (Fig. 2C). Control
experiments using this approach with cDNA from wild type CVB3/28
stocks generated clones with 10 C residues at the 5′ terminus upstream
of the authentic HEV-B consensus 5′ terminus (Kim et al., 2005). One of
the 4 clones had a5′ terminal C10 tract followedby sequence that aligned
with nt 26–360 of the enterovirus B sequence (Fig. 2C, MitoB) while in
two clones, the C10 tractwas followed by sequence aligning to nt 23–360
(Fig. 2C, MitoA). Because nt 23–25 are CCC in the HEV-B consensus, it is
possible that the deletions in these genomic termini might be 22–25 nt
in length, although25 and22nt are themost likely deletionsbasedupon
the C10 tract. Similarly, the final clone (Fig. 2C, MitoC) most likely had a
deletion of 36nt, although35–38ntdeletions are similarly possible. Like
the previously described CVB3-TD genomes isolated frommouse hearts
(Kim et al., 2005) or cell cultures (Kim et al., 2008), the deletions disrupt
or delete regions in the secondary structure termeddomain I (Bailey and
Tapprich, 2007): the loss of nt 1–22 and 1–25 delete stem a, while the
greater deletion (nt 1–36) delete stems a and b of domain I. Together,
these results demonstrated that the population of HEV RNA in the
human heart contained 5′ terminal genomic deletions.

The nucleotide and amino acid sequences of the heart virus identify it as
a modern strain of CVB2

Sequence analysis using overlapping cloned cDNAs was carried out
to determine the identity of the virus in the heartmuscle. The sequence
of the 5′ 2,563 nt of the heart HEV RNA (GenBank accession no.
EU177671) was determined as outlined in Materials and methods. A
BLAST search of GenBank using this sequence revealed closest identity
to the genomes of the six CVB serotypes, with the sequences showing
highest identity (92–93%) being partial sequences of CVB2 isolates from
2002 inKanagawa, Japan (GenBankaccessionnos. AB162751,AB162752).
Alignment of the 2,563 nt sequence to the prototype CVB genomes of
serotypes 1–6 (GenBank accession nos. AF081485, M16560, AY752944,
X05690, AF114383, AF114384) revealed that the heart virus sequence
sharedhighest nt identity (84%)with that of CVB2, strainOhio-1 (Polacek
et al., 1999) with significantly lower identities shared by genomes of the
other 5 CVB serotypes (74–75%). The relatively low identity with the
prototype CVB2 sequence (and to other prototype CVB genomes) in
comparison to the 2002 Kanagawa CVB2 isolates, was not surprising
given that the prototype strains circulated more than 50 years ago
(Melnick et al., 1950). However, a recently published study of an HEV in
type I diabetes patients (Dotta et al., 2007) generated a sequence which
shared N 99% overall nt identity with the CVB4 prototype strain Ben-
schoten originally isolated in 1951 (Sickles et al., 1955), with just one nt
mismatch in the 5′ NTR. As RT-PCR has a risk of contamination with
laboratory strains [see, for example, (Giacca et al., 1994)], it can be
concluded that the CVB4, “Tuscany” strain (Dotta et al., 2007), was
derived from contamination with the 58 year old prototype strain.
The 84% identity of the Mito sequence with the CVB2 prototype and
higher identity with sequences of CVB2 isolates from the same time
and geography demonstrates that the Mito sequence is not due to
contamination.

Oberste and colleagues (Nix et al., 2006; Oberste et al.,1999a,b) have
demonstrated that sequence analysis of the HEV VP1 genomic region
correlates with HEV serologic identity; virus strains within a specific
serotype shareN75% nucleotide identity or 85% amino acid identity. The
VP2 puff region [aa2129–2180 (Muckelbauer et al., 1995)] also has a
similar level of intraserotype (but not interserotype) identity and can be
used reliably to type HEV strains (Nasri et al., 2007). As we were unable
to sequence further than 2563 nt, we analyzed the sequence encoding
the entire VP2 capsid protein (nt 950–1721), comparing it to those
fromother CVB genomes. The closest identity again occurredwith CVB2
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(84–85%; GenBank accession nos. EF174468, EF174469, AF081485,
AF085363), with greater divergence from other CVB serotypes (72–74%).
We then examined the VP2 Puff sequence (aa197–250), a structure that
contributes to the determination of serotype (He et al., 2001). When
compared to those of modern and prototype CVB2 strains, the heart virus
sequence revealed highest identity with other CVB2 strains (Table 2).
Taken together, these results indicated that the heart virus was a modern
(ca. 2002) strain of CVB2 and was subsequently termed CVB2/Mito.

Terminally-deleted CVB2/Mito 5′ NTR in a CVB3 genome produces non-
cytopathic virus but restoration of the 5′ terminus to the consensus HEV-B
sequence produces a cytopathic virus

We replaced the 5′ NTR of the infectious cDNA copy of the cardio-
virulent strain CVB3/28 genome (Tracy et al., 2002) with the CVB2/Mito
5′NTR containing the 22 nt deletion to study how the CVB2/Mito 5′NTR
would function in an intact CVB genome. The 5′ NTRs of enteroviruses
have been shown to be functionally interchangeable, producing
infectious progeny viruses (Chapman et al., 2000a; Lukashev et al.,
2003; Semler et al.,1986). No cpewas observed following transfection of
this cDNA, termed CVB3/5NTRMitoTD23 [the TD23 genome is named
for the first nt of the genome relative to the enterovirus consensus;
(Kimet al., 2005)], intoHeLa cell cultures (Fig. 3A), although transfection
of the control CVB3/28 cDNA caused widespread cpe within 48 h
(Fig. 3A). However, upon restoration of the 22 nt 5′ terminal deletion
(CVB3/5NTRMito), a lytic phenotype was restored (Fig. 3A).

To verify that the transfection which did not generate cpe was in
fact productive and that transfected cDNA genomes produced viral
RNA, this experiment was repeated with HeLa cultures transfected
with RNA from CVB3/28, CVB3/5NTRMitoTD23, CVB3/5NTRMito, or
mock transfected as described above. Total RNA was isolated from
each culture, DNase treated, and assayed for the presence of viral RNA
Table 2
Alignment of the predicted amino acid sequence of the VP2 Puff from the heart virus (Mito

GenBank accession nos: CVB2/SE-96-72087, ABI31471; CVB2/SE-05-90025, ABI31477; CVB2
Benschoten, P08292; CVB4/E2, Q86887; CVB6/Schmitt, AAF21972; CVB1/SE-99-94869, ABI31
CVB5/SE-03-79895, ABI31514; CVB5/Peterborough, Q03053; CVB5/Faulkner, AAF21971; CVB
AAT79531; CVB3/Nancy, AAA42931; CVB3/20, AAV34213; CVB3/31-1-93, AAG23918; CVB3/
2129-2180. Dot indicates conserved sequence relative to Mito; – indicates deletion.

GenBank accession nos: CVB2/SE-96-72087, ABI31471; CVB2/SE-05-90025, ABI31477; CVB2
Benschoten, P08292; CVB4/E2, Q86887; CVB6/Schmitt, AAF21972; CVB1/SE-99-94869, ABI31
CVB5/SE-03-79895, ABI31514; CVB5/Peterborough, Q03053; CVB5/Faulkner, AAF21971;
AAT79531; CVB3/Nancy, AAA42931; CVB3/20, AAV34213; CVB3/31-1-93, AAG23918; CVB3/2
2129-2180. Dot indicates conserved sequence relative to Mito; – indicates deletion.

Table 2
Alignment of the predicted amino acid sequence of the VP2 Puff from the heart virus (M
by RT-PCR using E1 and primers specific for the 5′ terminus. Despite
the lack of cpe in CVB3/5NTRMitoTD23 infected cultures, viral RNA
was readily detected (Fig. 3B) with 5′ end primers outside of the
deleted sequence. Both the wild type (positive control) CVB3/28 RNA
and the RNA from the cultures infected with the CVB3/5NTRMito
(repaired deletion) strain were detected with all of the primers as
expected (Fig. 3B); these strains both induced complete cpe (Fig. 3A).

When supernatants of the CVB3/5NTRMitoTD23 infected cultures
were treated with ribonuclease, passed through 0.2 μm filters, and
placed on fresh HeLa cell monolayers, no cpe resulted but viral RNA
remained detectable (data not shown), indicating that infection was
due to a normal infectious process by virions and not by adventitious
contamination with free viral RNA. Measurement of the ratio of
positive to negative strand viral RNA in a purified CVB3/5NTR
MitoTD23 stock by real time RT-mediated quantitative PCR was
carried out. This revealed that both negative and positive strand viral
RNA was detected in RNA isolated from CsCl-purified virions with a
positive/negative strand ratio of 1.6:1. This finding with the chimeric
CVB3/Mito5NTRTD23 strain was consistent with known CVBTD
biology established with murine viral isolates (Kim et al., 2005),
confirming that CVBTD strains can encapsidate either negative or
positive stranded RNA. By comparison, stocks of parental strain CVB3/
28 showed no detectable negative strand RNA as expected from prior
work (Kim et al., 2005; Novak and Kirkegaard, 1991). Together, these
results showed that the CVB2/Mito 22 nt deletion incurred the same
type of replication lesion in the chimeric CVB3/5′ NTRMitoTD23 strain
as did other TD strains described previously (Kim et al., 2005).

Analysis of CVB3/5NTRMito in cell culture

Stocks of the chimeric CVB3/5NTRMito strainwere analyzed in single
step growth curves together with control virus strains, cardiovirulent
) with CVB serotype strains

/Ohio, AAD46138; CVB4/SE-04-85460, ABI31513; CVB4/SE-04-84828, ABI31533; CVB4
571; CVB1/SE-02-71582, ABI31508;CVB1/Tucson, AAO84299; CVB1/Conn-5, AAC00531
3/SE-94-51301, ABI31532; CVB3/AS, AAD53727; CVB3/CO, AAD53726; CVB3/GA,
28, AAV34212. VP2 “Puff” sequence of strains selected based on alignment with CVB3

/Ohio, AAD46138; CVB4/SE-04-85460, ABI31513; CVB4/SE-04-84828, ABI31533; CVB4
571; CVB1/SE-02-71582, ABI31508; CVB1/Tucson, AAO84299; CVB1/Conn-5, AAC00531
CVB3/SE-94-51301, ABI31532; CVB3/AS, AAD53727; CVB3/CO, AAD53726; CVB3/GA
8, AAV34212. VP2 “Puff” sequence of strains selected based on alignment with CVB

ito) with CVB serotype strains
/
;

/
;
,
3



Fig. 3. CVB3/5NTRMitoTD23 replicates without cytopathic effect but restoration of 5′ terminal sequence to HEV-B consensus results in cytopathic replication. (A) HeLa cell
monolayers were transfected with T7 RNA polymerase transcripts of pCMVT7r5NTRMitoTD23 (CVB3/5NTRMitoTD23), pCMVT7r5Mito (CVB3/5NTRMito), pCVB3-28 (CVB3/28) or
mock transfected, control. Monolayers were fixed at 72 h and stained with crystal violet. (B) cDNA from RNA of 72 h cultures of transfected HeLa monolayers was amplified with
primer E1 and primers S1ENTB (lane 1), S2ENTB (lane 2), S3ENTB (lane 3), S4ENTB (lane 4) and electrophoresed in 1.5% agarose. Lane M, Hi-Lo DNA Marker (Minnesota Molecular,
Minneapolis, MN); lane -, PCR with S4ENTB and E1 without template cDNA. Arrow indicates 750 bp.
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CVB3/28 and non-cardiovirulent CVB3/GA (Lee et al., 2005), in HeLa cell
and MHC cultures. The chimeric CVB3/5NTRMito strain replicated with
similar initial kinetics inHeLa cultures as the twowild typeCVB3 strains,
reaching a similar yield of infectious particles 2 h later (Fig. 4A). HeLa
cultures are a rich environment for the growth and replication of HEV,
making it difficult to differentiate virus strains that differ by replication
Fig. 4. CVB3/5NTRMito replicates in murine heart cells like virulent CVB3/28 and but not
(B) monolayers using triplicatewells initially seeded with 100,000 cells per well. Monolayers
were determined on HeLa cell monolayers. Square, CVB3/5NTRMito; filled circle, CVB3/28;
phenotype (Agol et al.,1989; Lee et al., 2005). However,when thesevirus
strains were similarly analyzed in cultures of MHC, a cell culture system
inwhich cardiovirulent CVB3 strains replicate to higher levels than non-
cardiovirulent strains (Kim et al., 2008), CVB3/5NTRMito and CVB3/28
replicated similarly in rate and extent, while the non-cardiovirulent
CVB3/GA replicated more slowly to 3 orders of magnitude lower titer
avirulent CVB3/GA. Single step growth curves were carried out in HeLa (A) and MHC
were inoculatedwith CVB3/5NTRMito, CVB3/28, or CVB3/GA at anMOI of 25. Virus titers
open circle, CVB3/GA.



Fig. 5. CVB3/5NTRMitoTD23 showsnopathogenic effects inmouseheart but CVB3/5NTRMitowith a restored5′ terminus causesmyocarditis.MaleA/Jmiceweremock infected (saline) (A),
or inoculated with 1×105 TCID50 units of CVB3/28 (B), or the equivalent of 1×105 TCID50 units of CVB3/5NTRMitoTD23 (C), or 1×105 TCID50 units of CVB3/5NTRMito (D). At day 14 post-
inoculation hearts were fixed in 10% buffered formalin and sections stained with hematoxylin and eosin. Typical lesions indicated by arrows. Original magnification, ×100. E. Heart
homogenates of mock-infected, CVB3/5NTRMitoTD23, CVB3/5NTRMito, or CVB3/28 inoculated A/J mice were used to inoculate HeLa cell monolayers. cDNA from RNA of 72 h cultures of
transfectedHeLamonolayerswas amplifiedwithprimerE1andE2andelectrophoresed in1.5% agarose. LaneM,1 kb ladder (Invitrogen); lane1, PCRwithE1andE2without template cDNA,
lane 2with CVB3/28 viral cDNA, lane 3with cDNAofmock-infected heart homogenate culture, lanes 4, 5with cDNA fromCVB3/5NTRMitoTD23 heart homogenate cultures, lanes 6, 7with
cDNA from CVB3/5NTRMito heart homogenate cultures, and lane 8 with cDNA from CVB3/28 heart homogenate culture. Arrow indicates 510 bp.
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(Fig. 4B). These results demonstrated that with an intact 5′ terminal
sequence, the 5′ NTR of CVB2/Mito permitted the chimeric virus to
replicate like a cardiovirulent strain.

Inoculation of mice with CVB3/5NTRMito induces myocarditis

To investigate whether the chimeric virus with the restored 22 nt
would induce myocarditis, male A/J mice (4–5 weeks old) were ino-
culated with 1×105 TCID50 equivalents of the defective strain (CVB3/
5NTRMitoTD23), the restored strain (CVB3/5NTRMito), or the control
strain (CVB3/28). Hearts from control mice, inoculated with 100 mM
saline (virus diluent) (Fig. 5A) were normal, and indistinguishable from
the hearts from mice inoculated with the defective strain CVB3/
5NTRMitoTD23 (Fig. 5C), despite the presence of viral RNA in the myo-
cardium (as determined by RT-PCR; data not shown). Inoculation with
CVB3/5NTRMito with the restored 5′ genomic terminus, induced myo-
carditis (Fig. 5D) to an extent similar to that induced by the control,
cardiovirulent strain, CVB3/28 (Fig. 5B). These results demonstrate that
the CVB2/Mito 5′NTR is capable ofworking in synergywith the rest of a
cardiovirulent CVB genome to generate myocarditis.
Discussion

This report documents for thefirst time that groupB coxsackieviruses
can generate heretofore unsuspected 5′ terminal genomic deletions
during replication in thehumanhost subsequent to anaturally-occurring
infection. Using RNA isolated from formalin-fixed, paraffin-embedded
heart muscle samples from a case of fulminant myocarditis in 2002 in
Mito, Japan (Oka et al., 2005) in which HEV protein and RNA were
detected,we have identified thevirus as a CVB2 strainwith close identity
to the Kanagawa strain of CVB2 which circulated in Japan in 2002.
Importantly, while we were unable to detect intact 5′ viral genomic
termini, deletions at the 5′ termini of at least 22–36 nt were present.
These data from a human sample closely mirror results first obtained
frommouse heart tissue following experimental CVB3 inoculation (Kim
et al., 2005) andmore recently, from CVB3-inoculated cell cultures (Kim
et al., 2008), thereby demonstrating that this newly-discovered aspect of
HEVbiologyhas clinical relevance in addition to the basic description of a
new aspect of the enterovirus replication cycle.

The discovery that HEV can delete the 5′ terminal genomic se-
quences during replication and thereby can persist in the host for long
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periods of time [as has been shown in themouse; (Kim et al., 2005)], has
led to the demonstration of dramatic changes in the replication cycle of
suchviruses. Terminally-deletedCVB3strains isolated frommouseheart
or tissue culture (Kim et al., 2008; 2005), similar to the CVB2/Mito
genome population characterized here, replicate very slowly and to low
titers. CVB3TD strains persisted for months in murine heart tissue but
did not induce cytopathic effects when heart homogenates were inocu-
lated onto HeLa cell monolayer cultures (Kim et al., 2005). Because
progeny infectious virus can nonetheless be detected in such cultures,
cell lysis undoubtedly occurs; however, due to the very slow replication
rate of the CVBTD strains, cpe in cell cultures is not observable by light
microscopy. No viral or genomic RNA replication was noted in a recent
study (Hunziker et al., 2007) of a CVB3 genome with an engineered
deletion of the 5′ terminal 32nt. In that study, viral translation was
assessed by labeling transfected cells for 30 min, while RNA replication
was assayed by slot-blot. However, previous work which required accu-
mulation of viral proteins for 24 h for detection by Western blot and
enzymatic amplification for detection of viral RNA (Kim et al., 2005),
strongly suggests that these assays would not have been sufficiently
sensitive to detect the low levels of virus found in cultures of CVB3TD.

The slow replication of CVBTD strains is linked to the deletions in
the domain I RNA structure, a structure that is known to be crucial for
HEV replication (Andino et al., 1990; Lyons et al., 2001; Sharma et al.,
2005). The interesting observation that the normally high positive/
negative viral RNA strand ratios in wild type infected cells (Novak and
Kirkegaard, 1991) decrease to near unity with CVB3TD viruses, further
indicates that 5′ terminal deletions deleteriously affect positive strand
viral RNA synthesis. The discovery of TD genomes has also provided a
mechanistic explanation for the detection of nearly equimolar levels of
positive and negative strand RNA that have been reported during
persistence of CVB in mice (Klingel et al., 1992; Tam and Messner,
1999). Because CVBTD (but not wild type) virions can contain either
negative or positive stranded viral RNA with nearly equal probability
(Kim et al., 2005), CVBTD attenuation is further enhanced because
negative strand viral RNA cannot be used as an mRNA upon infection.
We have also shown that passage of wild type CVB3 in cardiac primary
cell cultures can also generate TD strains (Kim et al., 2008), although
this was not observed in immortal cell cultures such as HeLa. These
latter findings indicate that the type of host cell and tissue plays a key
role in determining whether TD genome populations can displace
wild type virus. We have not yet explored whether other organs may
harbor similar populations of CVBTD strains following experimental
inoculation of mice.

Our discovery that TD genomes occur in human tissue raises the
question of their impact upon human health. Following experimental
inoculation of mice with CVB3, we (Kim et al., 2005) and others (Klingel
et al., 1992; Reetoo et al., 2000) have shown that viral RNA can be
detected in mouse heart muscle for weeks, well past the time that
cytolytic virus can be isolated in susceptible reporter cell cultures. Long-
term persistence of an HEV infection in the apparent absence of lytic
virus, has similarly been observed in human hearts by analysis of
sequential endomyocardial biopsies (Jin et al., 1990; Kuhl et al., 2005;
Stille-Siegener et al., 1993). Although the myocarditic heart used in this
study was from an acute stage of enteroviral myocarditis, no non-dele-
ted 5′ ends of viral genomes were detected by cloning or by am-
plification of 5′NTR sequence, indicating that in this tissue the process of
selection of deleted genomes is rapid. Although the possibility of repea-
ted HEV infections cannot be rigorously disproven in clinical studies, we
propose here that HEV persistence which occurs via generation of a TD
genome population, is themore likely mechanism. How could a slowly-
replicating, persisting TD virus population damage the heart? A
plausible mechanismwas suggested by work in which a CVB3 genome
was cloned in a transgenic mouse line under the cardiac myosin
promoter (Wesselyet al.,1998b). TheVP4/VP2autocatalytic cleavage site
(Wessely et al.,1998a)was engineered to prevent correct cleavage of the
VP0 protein, a lesion that prevented production of infectious virus
particles. These transgenicmice developed enlarged hearts, reminiscent
of dilated cardiomyopathy, a pathologic outcome thatwas subsequently
demonstrated to be due solely to expression of 2Apro (Xiong et al.,
2007), one of two CVB proteases, in the host. It is well established that
the expression of HEV proteins can alter host cell protein expression and
secretion (Belov and Ehrenfeld, 2007; Kundu et al., 2005; Kuyumcu-
Martinez et al., 2004; Lloyd et al., 1987). CVB proteins can cleave and
disrupt host cell proteins such as dystrophin (Badorff et al., 1999), a
cytoskeletal protein altered inX-linkeddilated cardiomyopathy (Towbin
et al., 1993), and host translation factors such as poly A binding protein
(Joachims et al.,1999; Kerekatte et al.,1999). Such changes can cause cell
and tissue dysfunction in the infected host. In the current fatal case of
fulminant myocarditis described by Oka et al. (2005), the CVB2 popu-
lation had already evolved to a TD form and viral proteins were ex-
pressed and accumulating in many intact cardiomyocytes at the time of
death (Fig. 2). Had the patient survived such an extensive myocardial
infection (which produced sufficient virus for verification of the 5′
terminal deletion), there would have been the potential for extensive
alteration of myocardial function by expression of the viral proteins.

The development of DCM as a consequence of viral myocarditis has
been discussed extensively in themedical literature (D'Ambrosio et al.,
2001; Figulla, 2004; Kawai, 1999; Mason, 2003) and has been revie-
wed and summarized recently (Spotnitz and Lesch, 2006). A question
frequently cited in these reviews has been the role that HEV infections
play in the development of DCM; whether symptoms are due to direct
viral-mediated effects on cell function during persistent infection as
discussed above or due to inflammation and autoimmunity persisting
post-infection (Fairweather et al., 2005; Huber, 2006). Although we
have not yet documented the presence of TD forms in DCM, this study
demonstrates that HEV in human heart infections can rapidly evolve
to the TD form, a form capable of persisting far beyond the acute stage
(Kim et al., 2005). The results presented here and elsewhere (Kim
et al., 2008; 2005) have now documented a natural and previously
unsuspected mechanism by which cardiotropic HEV strains can per-
sist as a productive infection of the heart, providing an environment in
which cleavage of and damage to host cell proteins by viral proteases
expressed from the persistently infectious viral genome, can accu-
mulate with time with deleterious outcomes.

How does a TD genome population persist in the face of an acti-
vated adaptive immune response?We theorize that TD genomes arise
through RNA polymerase error; in support of this, while the HEV
3Dpol has been shown to be a processive enzyme, small amounts of
prematurely terminated transcripts have been detected (Rodriguez-
Wells et al,., 2001). We propose that TD genomes are present in any
replicating HEV population and that this defective quasispecies
population can rapidly become dominant if the environment changes
to favor them over lytic wild type HEV replication (Domingo et al.,
2006). At present, we cannot assay for the presence of TD genomes in
the presence of intact wild type genomes, and can therefore demon-
strate TD RNA only when the TD RNA population has becomes
dominant. In experimentally-inoculated mice (Kim et al., 2005), we
have shown that TD genomes become detectable in the latter part of
the acute viral replication period when the adaptive immune system
has been activated and has largely cleared thewild type virus from the
host. Activation of the serotype-specific adaptive immune response
against the infecting virus is a prime candidate for the significant
change in the environment that leads to clearing of fast-replicating
wild type virus without eradication of the TD population. In support of
this, inoculation of scidmice (which lack functional B and T cells) with
poorly pathogenic CVB strains results in long-term persistence of
infectious, cytopathic virus (S Tracy, unpublished data).

But why aren't TD populations also eradicated in the immunocom-
petent host? We theorize that it is related to the TD virus population's
slow replication rate, which may be linked with low antigen levels or
expression. Following inoculation of immunocompetent mice with
cloned CVB3TD strains (Kim et al., 2008; 2005), we have been unable to
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detect neutralizing antiviral antibodies (lowest dilution, 1:6), although
antibodies that bind purified virions used as target antigens in ELISA are
detectable, albeit at lower concentrations than in sera ofmice inoculated
withwild type CVB3 (N. Chapman, S. Tracy, unpublished data). Together
with the profound defects in TD virus replication, these observations
suggest that TDviruspopulations are poorlyantigenic,most likely due to
low virus antigen loads in the host. These results may also define why
areas of extensive lymphocytic infiltration border but seldom overlap
with, areas of viral protein expression found in this study (Fig. 1) and in
work of others (Tamet al.,1991; Zhanget al., 2000). Thus, evenunder the
scrutiny of a thoroughly activated adaptive immune system, HEV
persistence can occur via a significantly restrained lifestyle compared
to the acute, high-titer, cell-damaging replication normally associated
with HEV infections (Pallansch and Roos, 2001).

Materials and methods

Cell culture and viruses

CVB3/28 (Tracy et al., 2002) and CVB3/GA (Lee et al., 2005) have been
cloned, sequenced and described previously. Virus stockswere prepared
in HeLa cell monolayers as previously described (Kim et al., 2005) or
propagated in cultures of primary murine heart cells (MHC). MHC
cultures were derived fromminced ventricular tissue of a male C3H/HeJ
mouse at 6 weeks of age as described (Toraason et al., 1989) with minor
modification. Briefly, mouse heart tissue was finely chopped, washed in
saline, and trypsinized (50 μg/ml;Worthington Biochemical Corp., Lake-
wood, NJ) at 50 μg/ml in calcium and magnesium-free Hanks balanced
salt solutionwith 30 mM 2,3 butanedione 2-monoxime for 20 h at 6 °C.
This was then treated with collagenase (100 U/ml; Worthington
Biochemical Corp.) for 1 h at 37 °C in Claycomb medium (SAFC Bio-
sciences, Inc.; Lenexa, KS), and passed through a 70 μm cell strainer (BD
Falcon, San Jose, CA). The filtrate was placed into culture in Claycomb
medium supplemented with 10% fetal bovine serum, 1 U/ml penicillin,
100 μg/ml streptomycin, 0.1 mM norepinephrine and 2mM L-glutamine
at 37 °C, 5% CO2. MHC cultures were used between passages 4 and 15.

Detection of viral capsid protein in human heart tissue by
immunohistochemistry

Formalin-fixed, paraffin-embedded heart muscle samples (approxi-
mately 9 cm3) were used to cut sections for immunohistochemistry and
RNA isolation (below). Immunohistochemical staining for viral capsid
protein was performed essentially as described (Drescher et al., 2004;
Tracy et al., 2002). Briefly, following deparaffinization, rehydration, and
steaming in 10 mM sodium citrate (pH=6.0) to expose epitopes, slides
were blocked with normal goat serum (Sigma; St. Louis, MO). Detection
was performed using a mouse monoclonal antibody against a common
antigen in the enteroviral capsidproteinVP1 (Clone5-D8/1;DAKOCorp.,
Carpinteria, CA). Control slides received an isotype control sera (mouse
IgG2a isotype control; eBioscience, San Diego, CA). Antibody was detec-
ted with an Alexa UO 488-labeled goat anti-mouse IgG (H+L) antibody
(Invitrogen; San Diego, CA).

Isolation of human heart RNA

About 40–50 sections (6 μm) from a tissue block were cut for each
RNA preparation. Sections were deparaffinized in xylene, washed suc-
cessively with 100%, 90% and 70% ethanol, washed once in 10 mM Tris–
HCl, pH 8.0, then mixed with 6000 U/ml proteinase K (Ambion; Austin,
TX) in 10 mM Tris–HCl, pH 8.0, 100 mMNaCl, 25 mMEDTA,1% w/v SDS,
for 18 h at 56 °C. Total RNA was then isolated on silica-based matrix
columns (ZR Viral RNA Kit; Zymo Research, Orange, CA). Over the course
of thiswork, enteroviral RNAwas isolated fromthreedifferent samples of
the myocarditic heart muscle. RT-PCR for enteroviral RNA (below) was
performed prior to using the RNA for characterizing the viral genome.
Virus identification strategy

Because the serotype of the HEV strain in the myocarditic heart had
not beenpreviously identified (Oka et al., 2005),weproceeded to amplify
the viral genome inoverlapping fragments for sequence analysis. Purified
heart RNA was short in length after extraction from the formalin-fixed
heart and it was necessary to use numerous reverse transcription and
PCR steps to acquire overlapping amplimers for progressive sequence
analysis of the HEV genome inward from the 5′ end. We first amplified
the viral 5′ non-translated region (NTR) because 5′ NTR sequences are
well-conserved among the HEV (Racaniello, 2007), followed by ampli-
mers within the capsid protein coding region of the genome. All primers
used are listed inTable 1.HEV-conservedprimers targeting the5′NTR [E8
(Kim et al., 2005) with E1 (Chapman et al., 1990) and E2 (Chapman et al.,
1990)withDRevEntB (reverse complementof nt 745–766, Table 1)]were
used to amplify and sequence 662 nt of the 5′ NTR. Heart virus-specific
sense primers (Mito5NTR, MitoVP4, MitoVP2, Table 1) were designed
using this 5′ NTR sequence as well as subsequently amplified cDNA
sequences. cDNA was amplified using sense and antisense primers
(VP4REV, VP2REVC, VP2REVA, CVB2VP1REV; Table 1) based on an
human enterovirus B (HEV-B) consensus sequence from alignment of 90
complete HEV-B genomes in GenBank (November, 2005). We used an
HEV-B consensus sequence because of the established association of the
CVB (classified as HEV-B) with myocarditis (Kim et al., 2001).

cDNA was transcribed in 20 μl reactions containing 100–200 ng of
heart RNA, 10 pmol of primer E1 (Chapman et al., 1990), DREVENTB,
VP4Rev, VP2REVC,VP2REVA, or CVB2VP1REV (Table 1) and1U Improm-
II reverse transcriptase (Promega; Madison WI), 3 mM MgCl2 and
0.5 mM each dNTP in Improm-II buffer. The cDNAwas either diluted 10
fold with water prior to PCR or concentrated by ethanol precipitation.
cDNAwas amplified using Taq polymerase (Promega) (Kim et al., 2005).
For the detection of the viral genome, amplification was carried out
usingprimersE1 andE2 (Chapmanet al.,1990). For characterizationof 5′
terminal sequences, the primer E3Sub (Table 1) was paired with S (Kim
et al., 2005) or anyof the SENTBprimers (Table 1). For cloningof the viral
5′ NTR, E1-primed cDNA was tailed with dG10 residues using terminal
deoxynucleotidyl transferase (Promega), amplifiedwith aprimerannea-
ling to the 3′G10, DC-Tail (Kim et al., 2005) and E5 (Table 1), then ligated
into pPCR-Script-Amp (Strataclone PCR; Stratagene, La Jolla, CA) as
described previously (Kim et al., 2005). Colonies with insert-containing
plasmids were identified by PCR using primers that flank the polylinker
(M13forward and reverse; Stratagene). Plasmid DNA was purified and
both strands sequenced using the same primers.

Generation of a chimeric infectious CVB3 cDNA with the Mito 5′ NTR

Overlap extension (Horton et al., 1989) was used to generate a
complete 5′NTR from smaller fragments. The cDNAof the 22 nucleotide
deletion in theCVB2Mito genomewas amplifiedwithDC-Tail (Kimet al.,
2005) and E5. A clone containing the E8–E1 fragment of the viral
sequence (nt 65–644)wasused as a template to amplifywithprimers E8
and E1. These amplimers were purified from an agarose gel, mixed in
equimolar ratios in water, denatured at 94 °C for 1 min, cooled to room
temperature, and amplified by PCR with terminal primers DC-Tail and
E1. Similarly, cDNA amplified from cloned cDNAcontaining nt 644–1046
withMito5NTR and VP4REVwas denaturedwith the product of the first
overlap PCR, cooled to room temperature, and amplifiedwith DREV and
23RIBOZ1 (Table 1). Subsequent amplificationwith DREV and 23RIBOZ2
(Table 1) followed by amplification with DREV and TD23RIBOZPCRT7
(Table 1) was used to generate a 5′NTRwith an added NotI site, T7 RNA
polymerase promoter, a ribozymewhich cleavesRNA transcripts at nt 23
(Herold and Andino, 2000) and a SacI site at nt 751. Using the NotI and
SacI sites, the deleted 5′NTRwas substituted for the CVB3/28 5′NTR in a
subclone containing nt 1–2011 of cDNA of CVB3/28 to generate
pBST7rTD235NTR. This recombinant Mito/CVB3 sequence was subse-
quently ligated into the pCVB3-28 plasmid which has a full length
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infectious cDNA (Tracy et al., 2002) using the NotI site and an XhoI site
(at nt 2011) to generate pCMVT7r5NTRMitoTD23.

To generate a chimeric CVB3/28 genome with the CVB2/Mito 5′
NTR and a restored 5′ terminal sequence (nt 1–22), cDNA was am-
plified from pBST7rTD235NTR with successive PCRs using DREV and
ENTBCONSENSUS (Table 1), thenwith DREV and 28RIBOZ1 (Kim et al.,
2005), with DREV and 28RIBOZ2 (Kim et al., 2005) and finally with
DREV and 28RIBOZPCRT7 (Table 1) to generate a NotI site, a ribozyme
and the consensus 5′ terminal 22 nucleotides generated by alignment
of 90 5′ terminal containing enterovirus B sequences from GenBank.
This cDNA was cloned into the pCMVT7r28 infectious cDNA as des-
cribed above to generate pCMVT7r5NTRMIitoCVB3.

Generation of progeny virus from infectious cDNA clones

RNA polymerase T7 was used to transcribe RNA from pCMVT7r
5NTRMitoCVB3, pCMVT7r5NTRMitoTD23, and pCMVT7r28 (Ribomax;
Promega). HeLa cells (1×106 per well) growing as a monolayer in 6 well
plates, were transfected with 10 μg T7 transcript RNA of pCMVT7r28 or
pCMVT7r5NTRMitoCVB3 (Transmessenger; Qiagen, Valencia CA), then
incubated at 37 °C for 72 h or until 90% cytopathic effect was observed.
Plates were harvested by freezing and thawing three times, after which
the lysate was centrifugally cleared of cellular debris. Virus stocks (CVB3/
5NTRMito, CVB3/28)were prepared onHeLa cells and titered as described
previously (Kimet al., 2005). Viruswas generated frompCMVT7r5NTRMi-
toTD23 (termed CVB3/5NTRMitoTD23) by transfection of HeLa and con-
centration as described previously (Kim et al., 2005).

Determination of positive to negative strand viral RNA ratios

To determine positive to negative polarity ratios of viral RNA, RNA
was purified from virus-infected cells (ZR Viral RNA Kit, Zymo Research,
Promega). T7 (positive strand) andSP6 (negative strand) transcripts from
a subclone of CVB3/28 (pBSCVB3NXh containing nt 1–2011 of the CVB3
genome) were prepared (Ribomax) for positive and negative strand
controls. RNA was purified by annealing a biotinylated strand-specific
primer (E3 for annealing to positive strand and E3REV for negative
strand) to RNA and purified using streptavidin-labeled magnetic beads
(Dynabeads M-280 streptavidin; Dynal Biotech, New York NY) as
described previously (Kim et al., 2005). cDNA was reversed transcribed
from purified positive strand using primer E1 and from negative strand
with primer E2 (Chapman et al., 1990). For quantitative PCR, ten percent
of cDNA was used with E1 and E2 at 0.125 OD260/ml in DyNAmo SYBR
Green qPCR reaction mix (Finnzyme; Finland). Ten-fold dilutions of
2.16×1011 copies through 2.16×103 copies of T7 or SP6 transcripts of
pBSCVB3NXh were used for the generation of a standard curve. Cycling
timeswere1 cycle at 95 °C for 15 s, 45 cycles at 95 °C for 20 s, 55 °C for20s
and 72 °C for 20 s and finishingwith a final extension at 72 °C for 10min.
qPCRs were carried out using an Opticon 2 DNA Engine (MJ Research,
Waltham, MA). The copy number of viral RNA samples was determined
based on a standard curve of C(t) level versus copy number of the T7
(positive strand) or SP6 (negative strand) RNA polymerase transcripts.

Single step growth curves

Single step growth curves were performed as previously described
(Chapman et al., 2000b) with CVB3/5NTRMito, cardiovirulent CVB3/28
(Tracy et al., 2002) and nonvirulent CVB3/GA (Lee et al., 2005) using a
multiplicity of infection (MOI) of 25 TCID50 per cell on HeLa and MHC
monolayer cultures. Timepointswere takenby freezing cultures at−70 °C,
after which infectious titers were assayed on HeLa cell monolayers.

Inoculation of mice

Five 3–4 week old A/J male mice (Jackson Laboratory; Bar Harbor,
ME) were inoculated intraperitoneally with 1×105 TCID50 units of
CVB3/28 or CVB3/5NTRMito, or with 0.1 ml concentrated CVB3/
5NTRMitoTD23 [the concentration of positive strand RNA by quanti-
tative PCR was equivalent to 104 TCID50 (Kim et al., 2005)]. At day 14
post-inoculation, the pancreas and half of each heart from eachmouse
were formalin-fixed, embedded, sectioned and stained with hema-
toxylin and eosin for pathology. HeLa cell cultures (1×105 cells in 24
well plates) were inoculated with the homogenate made from the
other heart half and incubated for 72 h (Kim et al., 2005). Total RNA
was then prepared from these cell cultures and viral cDNA amplified
with E1 and E2 primers as described above.
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