13 research outputs found

    Spatiotemporal studies of black spruce forest soils and implications for the fate of C

    Get PDF
    Post-fire storage of carbon (C) in organic-soil horizons was measured in one Canadian and three Alaskan chronosequences in black spruce forests, together spanning stand ages of nearly 200 yrs. We used a simple mass balance model to derive estimates of inputs, losses, and accumulation rates of C on timescales of years to centuries. The model performed well for the surface and total organic soil layers and presented questions for resolving the dynamics of deeper organic soils. C accumulation in all study areas is on the order of 20–40 gC/m2/yr for stand ages up to ∼200 yrs. Much larger fluxes, both positive and negative, are detected using incremental changes in soil C stocks and by other studies using eddy covariance methods for CO2. This difference suggests that over the course of stand replacement, about 80% of all net primary production (NPP) is returned to the atmosphere within a fire cycle, while about 20% of NPP enters the organic soil layers and becomes available for stabilization or loss via decomposition, leaching, or combustion. Shifts toward more frequent and more severe burning and degradation of deep organic horizons would likely result in an acceleration of the carbon cycle, with greater CO2 emissions from these systems overall

    Testing and Improving a UAV-Based System Designed for Wetland Methane Source Measurements

    Get PDF
    Wetlands are the single highest emitting methane source category, but the magnitude of wetland fluxes remains difficult to fully characterize due to their large spatial extent and heterogeneity. Fluxes can vary with land surface conditions, vegetation type, and seasonal changes in environmental conditions. Unmanned aerial vehicles (UAVs) are an emerging platform to better characterize spatial variability in these natural ecosystems. While presenting some advantages over traditional techniques like towers and flux chambers, in that they are mobile vertically and horizontally, their use is still challenging, requiring continued improvement in sensor technology and field measurement approaches. In this work, we employ a small, fast response laser spectrometer on a Matrice 600 hexacopter. The system was previously deployed successfully for 40 flights conducted in a four-day period in 2018 near Fairbanks, Alaska. These flights revealed several potential areas for improvement, including: vertical positioning accuracy, the need for sensor health indicators, and approaches to deal with low wind speeds. An additional set of flights was conducted this year near Antioch in California. Flights were conducted several meters above ground up to 15-25 m in a curtain pattern. These curtains were flown both upwind and downwind of a tower site, allowing us to calculate a mass balance methane flux estimate that can be compared to eddy covariance fluxes from the tower. Testing will better characterize the extent to which altitude drifts in-flight and how GPS values compare with measurements from the onboard LIDAR, as well as the agreement between two-dimensional wind speed and direction on the ground versus measured onboard the UAV. Hardware improvements to the sensor and GPS are being considered to help reduce these sources of uncertainty. Results of this testing and how system performance relates to needs for quantifying wetland fluxes, will be presented

    Persistent net release of carbon dioxide and methane from an Alaskan lowland boreal peatland complex

    Get PDF
    Permafrost degradation in peatlands is altering vegetation and soil properties and impacting net carbon storage. We studied four adjacent sites in Alaska with varied permafrost regimes, including a black spruce forest on a peat plateau with permafrost, two collapse scar bogs of different ages formed following thermokarst, and a rich fen without permafrost. Measurements included year-round eddy covariance estimates of net carbon dioxide (CO2), mid-April to October methane (CH4) emissions, and environmental variables. From 2011 to 2022, annual rainfall was above the historical average, snow water equivalent increased, and snow-season duration shortened due to later snow return. Seasonally thawed active layer depths also increased. During this period, all ecosystems acted as slight annual sources of CO2 (13–59 g C m−2 year−1) and stronger sources of CH4 (11–14 g CH4 m−2 from ~April to October). The interannual variability of net ecosystem exchange was high, approximately ±100 g C m−2 year−1, or twice what has been previously reported across other boreal sites. Net CO2 release was positively related to increased summer rainfall and winter snow water equivalent and later snow return. Controls over CH4 emissions were related to increased soil moisture and inundation status. The dominant emitter of carbon was the rich fen, which, in addition to being a source of CO2, was also the largest CH4 emitter. These results suggest that the future carbon-source strength of boreal lowlands in Interior Alaska may be determined by the area occupied by minerotrophic fens, which are expected to become more abundant as permafrost thaw increases hydrologic connectivity. Since our measurements occur within close proximity of each other (≤1 km2), this study also has implications for the spatial scale and data used in benchmarking carbon cycle models and emphasizes the necessity of long-term measurements to identify carbon cycle process changes in a warming climate

    Constraining models for C Exchange in Permafrost and Peatland Soils: Soil radiocarbon and its utility for C turnover

    No full text
    Permafrost and peatland systems generally accumulate carbon (C ) upward as the carbon also turns over. This turnover-accumulation paradigm sets these systems apart from other soils partially because C pools and their average ages have a vertical rather than mixed structure. Past rates of C exchange in permafrost and peatland soils are more common than turnover models and while helpful, such rates are inherently biased toward events and periods in which there was a net positive exchange onto land and for periods or places in which C is preserved. For example we assume that slow rates of peat accumulation correspond to periods when net losses or smaller gains persisted. Preserved char material holds hope for indicating periods of net C loss via combustion, but periods of enhanced decomposition have few, if any, direct and datable indicators that link C loss to past climate events at spatial scales that are meaningful to soil-plant-atmosphere studies. Models greatly expand the opportunity for linking net C exchange to climate conditions of the past, but model testing by peat, macrofossil, or C data is limited conceptually and quantitatively by not addressing the entire soil C pool and its dynamic nature. We approach this problem with hypothesis testing. For hypothesis formulation, we turned to multi-year modern flux measurements to look for triggers of C loss or lower accumulation rates (via net ecosystem carbon balance (NECB) or net ecosystem production) in periods or places in which (1) water tables are more variable or are drawn down to aerate more peat, and (2) active layer thickness is deeper, resulting in greater ratio of thawed: frozen substrates. Keeping in mind that significant or persistent changes in seasonal factors could trigger (1) or (2), we tested for times or areas in which NECB was reduced. For hypothesis testing, we then used two approaches. The first approach compared total inventories of bomb-enriched Cs-137, unsupported Pb-210, and bomb enriched C-14 and used controls sites for establishing regional variations in fallout. The second approach uses Cs-137 and Pb-210 chronologies and then uses soil C-14 data over those chronologies to estimate turnover times of bulk soil C. Preliminarily, C turnover in soils was fastest in well drained landscapes with deepest active layers and was slowest in mature forest stands with thinner active layers. This result is consistent with hypotheses that water tables and active layers play a leading role in governing soil carbon fate in high-latitude regions

    Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands

    No full text
    Climate change has increased the area affected by forest fires each year in boreal North America 1,2. Increases in burned area and fire frequency are expected to stimulate boreal carbon losses 3–5. However, the impact of wildfires on carbon emissions is also affected by the severity of burning. How climate change influences the severity of biomass burning has proved difficult to assess. Here, we examined the depth of ground-layer combustion in 178 sites dominated by black spruce in Alaska, using data collected from 31 fire events between 1983 and 2005. We show that the depth of burning increased as the fire season progressed when the annual area burned was small. However, deep burning occurred throughout the fire season when the annual area burned was large. Depth of burning increased late in the fire season in upland forests, but not in peatland and permafrost sites. Simulation
    corecore