763 research outputs found
Neurochemical correlates of autistic disorder: A review of the literature
Review of neurochemical investigations in autistic disorder revealed that a wide array of transmitter systems
have been studied, including serotonin, dopamine, norepinephrine, acetylcholine, oxytocin, endogenous
opioids, cortisol, glutamate, and gamma-aminobutyric acid (GABA). These studies have been complicated
by the fact that autism is a very heterogeneous disorder which often presents with comorbid behavioral
problems. In addition, many of these studies employed very small samples and inappropriate control groups,
making it difficult to draw conclusions with confidence. Overall, serotonin appears to have the most empirical
evidence for a role in autism, but this requires further investigation and replication. There is little support for
the notion that a dysfunction of norepinephrine or the endogenous opioids are related to autism. The role of
dopaminergic functioning has not been compelling thus far, though conflicting findings on central dopamine
turnover require further study. Promising new areas of study may include possible dysfunction of the
cholinergic system, oxytocin, and amino acid neurotransmitters. Implications for pharmacotherapy are
briefly discussed for each neurotransmitter system with brief research examples. Review of this work
emphasizes the need for future studies to control for subject variables, such as race, sex, pubertal status, and
distress associated with blood draws, which can affect measures of neurochemical function. In addition,
research in neurochemistry must continue to work in concert with other subspecialties to form a more
comprehensive and theory-based approach to the neurobiological correlates of autistic disorder
BALL SIZE AND WEIGHT EFFECTS ON THROWING KINEMATICS AND KINETICS IN YOUTH BASEBALL ATHLETES
In baseball, youth players play on smaller fields with shorter base path distance, pitching distance, and smaller mounds. Despite this, the baseball itself remains unchanged for youth athletes. This prospective cohort analyzed the kinematics and kinetics of 38 youth baseball pitchers while using modified sized and weighted baseballs. An ANOVA was used to determine statistical significance amongst ball modifications. ANOVA results show significance between the 3oz-5oz baseball with the 3oz baseball decreasing elbow varus torque. This is a preliminary study on the effects of modified baseballs on youth athletes
Assessment of nursing response to a real-time alerting tool for sepsis : A provider survey
An information technology solution to provide a real-time alert to the nursing staff is necessary to assist in identifying patients who may have sepsis and avoid the devastating effects of its late recognition. The objective of this study is to evaluate the perception and adoption of sepsis clinical decision support.Includes bibliographical reference
Recommended from our members
Variability in Makassar Strait heat flux and its effect on the eastern tropical Indian Ocean
The heat flux anomaly (HFa) within Makassar Strait, Indonesia, is investigated using observed velocity time series and El Niño-Southern Oscillation (ENSO)- scaled temperature profiles. Direct measurements of velocity from 40 m to 740 m depth were recorded during 2004–2011 and 2013–2017 during the International Nusantara STratification ANd Transport (INSTANT) and Monitoring Indonesian Throughflow (MITF) programs. The velocity profile is thermocline-intensified, with a velocity maximum near 100 m depth. In situ temperature measurements during 2004–2006 and ship-based CTD profiles collected during these two monitoring campaigns were combined with all available World Ocean Database CTD, ocean station, mechanical bathythermograph, and expendable bathythermograph data collected within Makassar Strait since 1950 to create representative temperature profiles for positive, negative, and neutral phases of ENSO. The Makassar velocity profile displays a stronger (weaker), shallower (deeper) velocity maximum, and a deeper (shallower) thermocline during La Niña (El Niño). Southward Makassar HFa increases rapidly from 2006 to 2008, with a peak of 0.13 PW in 2008 and 2009. Afterward, Makassar HFa slowly decreases to a minimum of −0.25 PW (less southward) during 2015, after which southward heat flux begins to climb again. Variability in depth-integrated volume transport from the surface to 740 m depth explains 57% of HFa variance. However, the total volume transport does not reflect the relative contributions of the warm upper and cool lower layers. Changes in the depth-dependent velocity profile explain 72% of HFa variance, whereas temperature profile variability explains only 28%. The impact of Makassar HFa variability on the Indian Ocean is assessed through comparison with the heat content anomaly (HCa) in an eastern tropical Indian Ocean box (ETIO; 101.5°E–105.5°E, and 9.5°S–15.5°S) using gridded Argo data. The ETIO HCa follows a similar pattern (R = 0.83) when lagged 30 months behind the Makassar HFa. Although well correlated, a notable discrepancy between the two time series is present in the ETIO in 2012/2013, possibly owing to a shift of the ITF from the dominant South Equatorial Current pathway to a southward Leeuwin track
Neurochemical correlates of autistic disorder: A review of the literature
Review of neurochemical investigations in autistic disorder revealed that a wide array of transmitter systems have been studied, including serotonin, dopamine, norepinephrine, acetylcholine, oxytocin, endogenous opioids, cortisol, glutamate, and gamma-aminobutyric acid (GABA). These studies have been complicated by the fact that autism is a very heterogeneous disorder which often presents with comorbid behavioral problems. In addition, many of these studies employed very small samples and inappropriate control groups, making it difficult to draw conclusions with confidence. Overall, serotonin appears to have the most empirical evidence for a role in autism, but this requires further investigation and replication. There is little support for the notion that a dysfunction of norepinephrine or the endogenous opioids are related to autism. The role of dopaminergic functioning has not been compelling thus far, though conflicting findings on central dopamine turnover require further study. Promising new areas of study may include possible dysfunction of the cholinergic system, oxytocin, and amino acid neurotransmitters. Implications for pharmacotherapy are briefly discussed for each neurotransmitter system with brief research examples. Review of this work emphasizes the need for future studies to control for subject variables, such as race, sex, pubertal status, and distress associated with blood draws, which can affect measures of neurochemical function. In addition, research in neurochemistry must continue to work in concert with other subspecialties to form a more comprehensive and theory-based approach to the neurobiological correlates of autistic disorder
A framework to tackle risk identification and presentation challenges in sepsis
Sepsis trajectories, including onset and recovery, can be difficult to assess, but electronic health records (EHRs) can accurately capture sepsis as a dynamic episode.Includes bibliographical reference
Recommended from our members
Indonesian Throughflow Partitioning Between Leeuwin and South Equatorial Currents
Indonesian Throughflow (ITF) waters move along multiple pathways within the Indian Ocean. The western route is within the thermocline of the South Equatorial Current (SEC), and the southern route is via injection into the Leeuwin Current (LC) along western Australia. We use gridded Argo data to examine heat content anomaly (HCa) within three boxes in the eastern Indian Ocean, one adjacent to the ITF outflow from the Indonesian Seas (ITF box), the second in the eastern portion of the SEC (SEC box), and the third in the LC (LC box). Although interannual HCa variability in the SEC and ITF boxes is well correlated, a large increase in HCa within the ITF box does not appear in the SEC box in 2011 but is evident in the LC box. The 2011 change in the SEC–LC partitioning is investigated using GODAS reanalysis by examining the strength of the SEC and LC during a 2009 HCa increase within the ITF box and the subsequent increase in 2011. During 2009, a strong SEC and weakened LC spread the increased ITF HCa into the central Indian Ocean, whereas a weak SEC and strengthened LC during 2011 transmit the HCa signal to the south. Near-surface winds and mean sea level pressure from NCEP–NCAR reanalysis reveal that Ningaloo Niño events led to shifts in ocean circulation during 2000 and 2011. LC and SEC exports show a high negative correlation at interannual time scales, indicating that a reduction of outflow from one pathway is partially compensated by an increase from the other
Makassar Strait Throughflow Seasonal and Interannual Variability: An Overview
The Makassar Strait throughflow of ~12–13 Sv, representing ~77% of the total Indonesian Throughflow, displays fluctuations over a broad range of time scales, from intraseasonal to seasonal (monsoonal) and interannual scales. We now have 13.3 years of Makassar throughflow observations: November 1996 to early July 1998; January 2004 to August 2011; and August 2013 to August 2017. Strong southward transport is evident during boreal summer, modulated by an ENSO interannual signal, with weaker southward flow and a deeper subsurface velocity maximum during El Niño; stronger southward flow with a shallower velocity maximum during La Niña. Accordingly, the southward heat flux, a product of the along‐channel current and temperature profiles, is significantly larger in summer and slightly larger during La Niña. The southward flow relaxed in 2014 and more so in 2015/2016, similar though not as extreme as during the strong El Niño event of 1997. In 2017, the throughflow increased to ~20 Sv. Since 2016, the deep layer, 300‐ to 760‐m southward transport increases, almost doubling to ~7.5 Sv. From mid‐2016 into early 2017, the transports above 300 m and below 300 m are about equal, whereas previously, the ratio was about 2.7:1. Near zero or northward flow occurs in the upper 100 m during boreal winter, albeit with interannual variability. Particularly strong winter reversals were observed in 2014/2015 and 2016/2017, the latter being the strongest winter reversal revealed in the entire Makassar time series
Estimation of muscle activation during different walking speeds with two mathematical approaches compared to surface EMG
Background
Muscle force estimation could improve clinical gait analysis by enhancing insight into causes of impairments and informing targeted treatments. However, it is not currently standard practice to use muscle force models to augment clinical gait analysis, partly, because robust validations of estimated muscle activations, underpinning force modelling processes, against recorded electromyography (EMG) are lacking.
Research Question
Therefore, in order to facilitate future clinical use, this study sought to validate estimated lower limb muscle activation using two mathematical models (static optimisation SO, computed muscle control CMC) against recorded muscle activations of ten healthy participants.
Methods
Participants walked at five speeds. Visual agreement in activation onset and offset as well as linear correlation (r) and mean absolute error (MAE) between models and EMG were evaluated.
Results
MAE between measured and recorded activations were variable across speeds (SO vs EMG 15–68%, CMC vs EMG 13–69%). Slower speeds resulted in smaller deviations (mean MAE < 30%) than faster speeds. Correlation was high (r > 0.5) for only 11/40 (CMC) and 6/40 (SO) conditions (muscles X speeds) compared to EMG.
Significance
Modelling approaches do not yet show sufficient consistency of agreement between estimated and recorded muscle activation to support recommending immediate clinical adoption of muscle force modelling. This may be because assumptions underlying muscle activation estimations (e.g. muscles’ anatomy and maximum voluntary contraction) are not yet sufficiently individualizable. Future research needs to find timely and cost efficient ways to scale musculoskeletal models for better individualisation to facilitate future clinical implementation
Quasi-particle model for lattice QCD: quark-gluon plasma in heavy ion collisions
We propose a quasi-particle model to describe the lattice QCD equation of
state for pure SU(3) gauge theory in its deconfined state, for .
The method involves mapping the interaction part of the equation of state to an
effective fugacity of otherwise non-interacting quasi-gluons. We find that this
mapping is exact. Using the quasi-gluon distribution function, we determine the
energy density and the modified dispersion relation for the single particle
energy, in which the trace anomaly is manifest. As an application, we first
determine the Debye mass, and then the important transport parameters, {\it
viz}, the shear viscosity, and the shear viscosity to entropy density
ratio, . We find that both and
are sensitive to the interactions, and that the interactions significantly
lower both and .Comment: 10 pages, 8 figures, epj class file, version accepted for publication
in Euro. Phys.J
- …