5 research outputs found

    Coupled monoubiquitylation of the co-E3 ligase DCNL1 by Ariadne RBR E3 ubiquitin ligases promotes cullin-RING ligase complex remodeling

    Get PDF
    Cullin-RING E3 ubiquitin ligases (CRLs) are large and diverse multisubunit protein complexes that contribute to about one-fifth of ubiquitin-dependent protein turnover in cells. CRLs are activated by the attachment of the ubiquitin-like protein neural precursor cell expressed, developmentally down-regulated 8 (NEDD8) to the cullin subunits. This cullin neddylation is essential for a plethora of CRL-regulated cellular processes and is vital for life. In mammals, neddylation is promoted by the five co-E3 ligases, defective in cullin neddylation 1 domain-containing 1-5 (DCNL1-5); however, their functional regulation within the CRL complex remains elusive. We found here that the ubiquitin-associated (UBA) domain-containing DCNL1 is monoubiquitylated when bound to CRLs and that this monoubiquitylation depends on the CRL-associated Ariadne RBR ligases TRIAD1 (ARIH2) and HHARI (ARIH1) and strictly requires the DCNL1's UBA domain. Reconstitution of DCNL1 monoubiquitylation in vitro revealed that autoubiquitylated TRIAD1 mediates binding to the UBA domain and subsequently promotes a single ubiquitin attachment to DCNL1 in a mechanism previously dubbed coupled monoubiquitylation. Moreover, we provide evidence that DCNL1 monoubiquitylation is required for efficient CRL activity, most likely by remodeling CRLs and their substrate receptors. Collectively, this work identifies DCNL1 as a critical target of Ariadne RBR ligases and coupled monoubiquitylation of DCNL1 as an integrated mechanism that affects CRL activity and client-substrate ubiquitylation at multiple levels

    Mechanism of activation and regulation of Deubiquitinase activity in MINDY1 and MINDY2

    Get PDF
    Of the eight distinct polyubiquitin (polyUb) linkages that can be assembled, the roles of K48-linked polyUb (K48-polyUb) are the most established, with K48-polyUb modified proteins being targeted for degradation. MINDY1 and MINDY2 are members of the MINDY family of deubiquitinases (DUBs) that have exquisite specificity for cleaving K48-polyUb, yet we have a poor understanding of their catalytic mechanism. Here, we analyze the crystal structures of MINDY1 and MINDY2 alone and in complex with monoUb, di-, and penta-K48-polyUb, identifying 5 distinct Ub binding sites in the catalytic domain that explain how these DUBs sense both Ub chain length and linkage type to cleave K48-polyUb chains. The activity of MINDY1/2 is inhibited by the Cys-loop, and we find that substrate interaction relieves autoinhibition to activate these DUBs. We also find that MINDY1/2 use a non-canonical catalytic triad composed of Cys-His-Thr. Our findings highlight multiple layers of regulation modulating DUB activity in MINDY1 and MINDY2

    Assembly and structure of Lys<sup>33</sup>-linked polyubiquitin reveals distinct conformations

    Get PDF
    Ubiquitylation regulates a multitude of biological processes and this versatility stems from the ability of ubiquitin (Ub) to form topologically different polymers of eight different linkage types. Whereas some linkages have been studied in detail, other linkage types including Lys(33)-linked polyUb are poorly understood. In the present study, we identify an enzymatic system for the large-scale assembly of Lys(33) chains by combining the HECT (homologous to the E6–AP C-terminus) E3 ligase AREL1 (apoptosis-resistant E3 Ub protein ligase 1) with linkage selective deubiquitinases (DUBs). Moreover, this first characterization of the chain selectivity of AREL1 indicates its preference for assembling Lys(33)- and Lys(11)-linked Ub chains. Intriguingly, the crystal structure of Lys(33)-linked diUb reveals that it adopts a compact conformation very similar to that observed for Lys(11)-linked diUb. In contrast, crystallographic analysis of Lys(33)-linked triUb reveals a more extended conformation. These two distinct conformational states of Lys(33)-linked polyUb may be selectively recognized by Ub-binding domains (UBD) and enzymes of the Ub system. Importantly, our work provides a method to assemble Lys(33)-linked polyUb that will allow further characterization of this atypical chain type

    K29-selective ubiquitin binding domain reveals structural basis of specificity and heterotypic nature of K29 polyubiquitin

    Get PDF
    Polyubiquitin chains regulate diverse cellular processes through the ability of ubiquitin to form chains of eight different linkage types. Although detected in yeast and mammals, little is known about K29-linked polyubiquitin. Here we report the generation of K29 chains in vitro using a ubiquitin chain-editing complex consisting of the HECT E3 ligase UBE3C and the deubiquitinase vOTU. We determined the crystal structure of K29-linked diubiquitin, which adopts an extended conformation with the hydrophobic patches on both ubiquitin moieties exposed and available for binding. Indeed, the crystal structure of the NZF1 domain of TRABID in complex with K29 chains reveals a binding mode that involves the hydrophobic patch on only one of the ubiquitin moieties and exploits the flexibility of K29 chains to achieve linkage selective binding. Further, we establish methods to study K29-linked polyubiquitin and find that K29 linkages exist in cells within mixed or branched chains containing other linkages

    PGE(2) induces macrophage IL-10 production and a regulatory-like phenotype via a protein kinase A-SIK-CRTC3 pathway

    No full text
    The polarization of macrophages into a regulatory-like phenotype and the production of IL-10 plays an important role in the resolution of inflammation. We show in this study that PGE(2), in combination with LPS, is able to promote an anti-inflammatory phenotype in macrophages characterized by high expression of IL-10 and the regulatory markers SPHK1 and LIGHT via a protein kinase A-dependent pathway. Both TLR agonists and PGE(2) promote the phosphorylation of the transcription factor CREB on Ser(133). However, although CREB regulates IL-10 transcription, the mutation of Ser(133) to Ala in the endogenous CREB gene did not prevent the ability of PGE(2) to promote IL-10 transcription. Instead, we demonstrate that protein kinase A regulates the phosphorylation of salt-inducible kinase 2 on Ser(343), inhibiting its ability to phosphorylate CREB-regulated transcription coactivator 3 in cells. This in turn allows CREB-regulated transcription coactivator 3 to translocate to the nucleus where it serves as a coactivator with the transcription factor CREB to induce IL-10 transcription. In line with this, we find that either genetic or pharmacological inhibition of salt-inducible kinases mimics the effect of PGE(2) on IL-10 production
    corecore