1,065 research outputs found

    Next steps for understanding the selective relevance of female-female competition

    Get PDF
    After decades of neglect, recent empirical research on exaggerated female traits (e.g., ornaments, armaments, aggression, acoustic signals, etc.) has revived interest in this widespread but poorly understood phenomenon, and shown that these traits often function in the context of female-female competition (West-Eberhard, 1983; Amundsen, 2000; Clutton-Brock, 2009; Rosvall, 2011a; Stockley and Bro-Jørgensen, 2011; Rubenstein, 2012 [Theme issue]; Stockley and Campbell, 2013 [Theme issue]). However, recent reviews have emphasized the applicability of sexual vs. social selection, rather than rigorously examining the role of different ecological contexts in shaping the evolution of traits used in competitive contexts (hereafter, “competitive traits”) in females. Thus, we still lack a solid understanding of the ecological and evolutionary mechanisms driving the evolution of female trait expression, in particular whether, how, and why these mechanisms vary among species, and between the sexes

    Amniotic Fluid Ingestion Enhances\ud Opioid-Mediated But Not\ud Nonopioid-Mediated Analgesia

    Get PDF
    Ingestion of amniotic fluid or placenta by rats has been shown to enhance several types of opioid-mediated analgesia: that induced by morphine, footshock, vaginal/cervical stimulation, and late pregnancy. This enhancement has also been blocked by administration of opioid antagonists. The present study was designed to examine further the specificity of the enhancement effect for opioid-mediated analgesia by testing for enhancement following administration of aspirin, a nonopioid analgesic. The formalin test was used as the pain threshold assay. Amniotic fluid or beef bouillon was administered by orogastric tube to rats that were treated either with morphine sulfate or saline. or pretreated with naltrexone, then treated with aspirin or vehicle. Both morphine and aspirin treatments produced analgesia. Amniotic fluid significantly enhanced the analgesia produced by morphine, but did not enhance the analgesia produced by aspirin, further suggesting that the enhancing effect of amniotic fluid ingestion is specific for opioid-mediated analgesia, such as that existing at the start of parturition

    Effects of hypothalamic knife cuts and experience on maternal behavior in the rat

    Get PDF
    Recent investigations suggest that the disruption of placentophagia, pup-directed maternal behavior, and nestbuilding seen after lesions of the medial preoptic area (MPO) or the lateral hypothalamus may be due to the interruption at different points of a single longitudinal neural system mediating these behaviors. To test this, we compared the effects of knife cuts on the lateral border of the MPO, and of the posterior medial forebrain bundle (MFB), with asymmetrical cuts combining a unilateral MPO cut with a contralateral MFB cut. We observed placentophagia, nestbuilding, and pup-directed maternal behaviors at, and after, parturition in both primiparous and biparous rats. In primiparae, MPO cuts (a) disrupted placentophagia, (b) delayed the onset of crouching and pup-licking, and (c) eliminated retrieval and nestbuilding. Asymmetrical cuts (a) disrupted placentophagia, and (b) delayed the onset of maternal behavior. In biparous rats, MPO cuts eliminated nestbuilding and retrieval. MFB cuts (a) disrupted placentophagia, and (b) eliminated nestbuilding. Asymmetrical cuts (a) delayed nestbuilding. These results suggest the involvement of a longitudinal neural system in the production of immediate pup-directed maternal behavior, placentophagia, and nestbuilding in parturient primiparae, but which is not critical for the eventual display of maternal behavior and nestbuilding in maternally naive rats, nor for the immediate onset of placentophagia and maternal behavior in maternally experienced rats

    Detecting Urban Emissions Changes and Events With a Near‐Real‐Time‐Capable Inversion System

    Full text link
    In situ observing networks are increasingly being used to study greenhouse gas emissions in urban environments. While the need for sufficiently dense observations has often been discussed, density requirements depend on the question posed and interact with other choices made in the analysis. Focusing on the interaction of network density with varied meteorological information used to drive atmospheric transport, we perform geostatistical inversions of methane flux in the South Coast Air Basin, California, in 2015–2016 using transport driven by a locally tuned Weather Research and Forecasting configuration as well as by operationally available meteorological products. We find total‐basin flux estimates vary by as much as a factor of two between inversions, but the spread can be greatly reduced by calibrating the estimates to account for modeled sensitivity. Using observations from the full Los Angeles Megacities Carbon Project observing network, inversions driven by low‐resolution generic wind fields are robustly sensitive (p < 0.05) to seasonal differences in methane flux and to the increase in emissions caused by the 2015 Aliso Canyon natural gas leak. When the number of observing sites is reduced, the basin‐wide sensitivity degrades, but flux events can be detected by testing for changes in flux variance, and even a single site can robustly detect basin‐wide seasonal flux variations. Overall, an urban monitoring system using an operational methane observing network and off‐the‐shelf meteorology could detect many seasonal or event‐driven changes in near real time—and, if calibrated to a model chosen as a transfer standard, could also quantify absolute emissions.Key PointsLA CH4 flux estimates differ by driving meteorology but agree when calibrated for model sensitivityAliso Canyon leak can be detected by inversions using operational meteorologyOperational meteorology driven inversions significantly detect seasonal emission changes even with only one sitePeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149534/1/jgrd55279-sup-0001-Text_SI-S01.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149534/2/jgrd55279.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149534/3/jgrd55279_am.pd

    Signing at the beginning versus at the end does not decrease dishonesty

    Get PDF
    Honest reporting is essential for society to function well. However, people frequently lie when asked to provide information, such as misrepresenting their income to save money on taxes. A landmark finding published in PNAS [L. L. Shu, N. Mazar, F. Gino, D. Ariely, M. H. Bazerman, *Proc. Natl. Acad. Sci. USA.* 109, 15197–15200 (2012)] provided evidence for a simple way of encouraging honest reporting: asking people to sign a veracity statement at the beginning instead of at the end of a self-report form. Since this finding was published, various government agencies have adopted this practice. However, in this project, we failed to replicate this result. Across five conceptual replications (*n* = 4,559) and one highly powered, preregistered, direct replication (*n* = 1,235) conducted with the authors of the original paper, we observed no effect of signing first on honest reporting. Given the policy applications of this result, it is important to update the scientific record regarding the veracity of these results

    How Methods for Navigating Uncertainty Connect Science and Policy at the Water-Energy-Food Nexus

    Get PDF
    As the water-energy-food (WEF) nexus becomes an increasingly common framework for bridging science and policy, there is a growing need to unpack and make explicit many of the methods and assumptions being used to operationalize the nexus. In this paper, we focus on two common approaches to nexus research, quantitative modeling and futures thinking, and the ways that each set of methodological tools address uncertainty. We first review the underlying assumptions of each approach with a focus on sources of and ability to measure uncertainty, and potential complementarities. Quantitative modeling takes a probabilistic approach to predicting the likelihood of a specific outcome or future state based on estimates of current system dynamics. In contrast, futures thinking approaches, such as scenario processes, explore novel changes that cannot be fully predicted or even anticipated based on current understandings of the nexus. We then examine a set of applied nexus projects that bridge science and policy-making contexts to better understand practitioner experiences with different methodological tools and how they are utilized to navigate uncertainty. We explore one nexus case study, LIVES Cambodia, in-depth, to better understand the opportunities and challenges associated with participatory modeling and stakeholder engagement with uncertainty in a policy-making context. Across the cases, practitioners identify the complementarity between modeling and futures thinking approaches, and those projects that integrated both into the planning process experienced benefits from having multiple angles on uncertainty within the nexus. In particular, stakeholder engagement provided critical opportunities to address some types of uncertainties (e.g., data gaps) through the use of local knowledge. Explicit discussions of model uncertainty and use of scenario processes also enabled stakeholders to deepen their understandings of uncertainties and envision policy pathways that would be robust to uncertainty. In many senses, models became boundary objects that encouraged critical thinking and questioning of assumptions across diverse stakeholders. And, for some nexus projects, confronting uncertainty in explicit and transparent ways build capacity for policy flexibility and adaptiveness. We conclude with a discussion of when and how these benefits can be fully realized through the strategic use of appropriate approaches to characterizing and navigating nexus uncertainty
    corecore