31 research outputs found

    Improved understanding of biorisk for research involving microbial modification using annotated sequences of concern

    Get PDF
    Regulation of research on microbes that cause disease in humans has historically been focused on taxonomic lists of ‘bad bugs’. However, given our increased knowledge of these pathogens through inexpensive genome sequencing, 5 decades of research in microbial pathogenesis, and the burgeoning capacity of synthetic biologists, the limitations of this approach are apparent. With heightened scientific and public attention focused on biosafety and biosecurity, and an ongoing review by US authorities of dual-use research oversight, this article proposes the incorporation of sequences of concern (SoCs) into the biorisk management regime governing genetic engineering of pathogens. SoCs enable pathogenesis in all microbes infecting hosts that are ‘of concern’ to human civilization. Here we review the functions of SoCs (FunSoCs) and discuss how they might bring clarity to potentially problematic research outcomes involving infectious agents. We believe that annotation of SoCs with FunSoCs has the potential to improve the likelihood that dual use research of concern is recognized by both scientists and regulators before it occurs

    Validation of high throughput sequencing and microbial forensics applications

    Get PDF
    High throughput sequencing (HTS) generates large amounts of high quality sequence data for microbial genomics. The value of HTS for microbial forensics is the speed at which evidence can be collected and the power to characterize microbial-related evidence to solve biocrimes and bioterrorist events. As HTS technologies continue to improve, they provide increasingly powerful sets of tools to support the entire field of microbial forensics. Accurate, credible results allow analysis and interpretation, significantly influencing the course and/or focus of an investigation, and can impact the response of the government to an attack having individual, political, economic or military consequences. Interpretation of the results of microbial forensic analyses relies on understanding the performance and limitations of HTS methods, including analytical processes, assays and data interpretation. The utility of HTS must be defined carefully within established operating conditions and tolerances. Validation is essential in the development and implementation of microbial forensics methods used for formulating investigative leads attribution. HTS strategies vary, requiring guiding principles for HTS system validation. Three initial aspects of HTS, irrespective of chemistry, instrumentation or software are: 1) sample preparation, 2) sequencing, and 3) data analysis. Criteria that should be considered for HTS validation for microbial forensics are presented here. Validation should be defined in terms of specific application and the criteria described here comprise a foundation for investigators to establish, validate and implement HTS as a tool in microbial forensics, enhancing public safety and national security.Peer reviewe

    MetScale Results

    No full text

    Functional_Inference

    No full text

    Taxonomic_Classification

    No full text

    Read_Filtering

    No full text

    Dahak

    No full text
    A sustainable approach to non-clinical metagenomic analyse

    Melanized Fungi

    No full text

    Analysis of bronchoalveolar lavage fluid metatranscriptomes among patients with COVID-19 disease

    No full text
    To better understand the potential relationship between COVID-19 disease and hologenome microbial community dynamics and functional profiles, we conducted a multivariate taxonomic and functional microbiome comparison of publicly available human bronchoalveolar lavage fluid (BALF) metatranscriptome samples amongst COVID-19 (n = 32), community acquired pneumonia (CAP) (n = 25), and uninfected samples (n = 29). We then performed a stratified analysis based on mortality amongst the COVID-19 cohort with known outcomes of deceased (n = 10) versus survived (n = 15). Our overarching hypothesis was that there are detectable and functionally significant relationships between BALF microbial metatranscriptomes and the severity of COVID-19 disease onset and progression. We observed 34 functionally discriminant gene ontology (GO) terms in COVID-19 disease compared to the CAP and uninfected cohorts, and 21 GO terms functionally discriminant to COVID-19 mortality (q < 0.05). GO terms enriched in the COVID-19 disease cohort included hydrolase activity, and significant GO terms under the parental terms of biological regulation, viral process, and interspecies interaction between organisms. Notable GO terms associated with COVID-19 mortality included nucleobase-containing compound biosynthetic process, organonitrogen compound catabolic process, pyrimidine-containing compound biosynthetic process, and DNA recombination, RNA binding, magnesium and zinc ion binding, oxidoreductase activity, and endopeptidase activity. A Dirichlet multinomial mixtures clustering analysis resulted in a best model fit using three distinct clusters that were significantly associated with COVID-19 disease and mortality. We additionally observed discriminant taxonomic differences associated with COVID-19 disease and mortality in the genus Sphingomonas, belonging to the Sphingomonadacae family, Variovorax, belonging to the Comamonadaceae family, and in the class Bacteroidia, belonging to the order Bacteroidales. To our knowledge, this is the first study to evaluate significant differences in taxonomic and functional signatures between BALF metatranscriptomes from COVID-19, CAP, and uninfected cohorts, as well as associating these taxa and microbial gene functions with COVID-19 mortality. Collectively, while this data does not speak to causality nor directionality of the association, it does demonstrate a significant relationship between the human microbiome and COVID-19. The results from this study have rendered testable hypotheses that warrant further investigation to better understand the causality and directionality of host–microbiome–pathogen interactions
    corecore