542 research outputs found

    HST and Spitzer Observations of the HD 207129 Debris Ring

    Get PDF
    A debris ring around the star HD 207129 (G0V; d = 16.0 pc) has been imaged in scattered visible light with the ACS coronagraph on the Hubble Space Telescope and in thermal emission using MIPS on the Spitzer Space Telescope at 70 microns (resolved) and 160 microns (unresolved). Spitzer IRS (7-35 microns) and MIPS (55-90 microns) spectrographs measured disk emission at >28 microns. In the HST image the disk appears as a ~30 AU wide ring with a mean radius of ~163 AU and is inclined by 60 degrees from pole-on. At 70 microns it appears partially resolved and is elongated in the same direction and with nearly the same size as seen with HST in scattered light. At 0.6 microns the ring shows no significant brightness asymmetry, implying little or no forward scattering by its constituent dust. With a mean surface brightness of V=23.7 mag per square arcsec, it is the faintest disk imaged to date in scattered light.Comment: 28 pages, 8 figure

    High resolution imaging of the GG Tau system at 267 GHz

    Full text link
    Studying circumbinary disks is critical to understanding the formation mechanisms of binary stars. While optical or mid-infrared images reveal the scattered mission, millimeter observations provide direct measurements of the dust thermal emission. We study the properties of the circumbinary disk around the well-known, multiple young stellar object GG Tau with the highest possible sensitivity and spatial resolution. We mapped the continuum emission of GG Tau at 267 GHz using the IRAM Plateau de Bure interferometer equipped with upgraded receivers and LO systems. An angular resolution of 0.45"x0.25" was achieved, corresponding to a linear resolution of 65x35 AU. The GG Tau A circumbinary disk is observed as an extremely clearly defined narrow ring. The width of the ring is not resolved. Emission from the central binary is detected and clearly separated from the ring: it coincides with the GG Tau Aa position and may therefore trace a circumstellar disk around this star. The mass ratio of the circumbinary to circumprimary material is ~80.Comment: 5 pages, 2 figures, accepted for publication in A&

    Development of a fast and flexible generic process for the reduction of nitro compounds

    Get PDF
    The hydrogenation of aromatic nitro substrates is a frequently used reaction in the multi-step fabrication of active pharmaceutical ingredients (APIs). Today most pharmaceutical production processes are performed in batch mode. In the frame of the C2-campaign speed is an important factor during the production of a multitude of possible API’s. A generic reactor set-up able to be adapted for the transformation of a specific substrate would reduce the development time and thereby the campaign time significantly. In the frame of the EU-project F3-Factory such a flexible and continuous reaction system for this important reaction class able to produce 1-5 kg API is being developed. To allow for an easy and fast adaptation of this process for a range of nitro substrates a substrates adoption methodology (SAM) is also being developed. A literature study of the nature of different reduction methods (H2 gas, H-Donor, CO gas, etc.) led to the conclusion that the liquid phase reduction of aromatic nitro substrates by either hydrogen gas or an H-donor is the most selective method. Following the requirements of that reaction type a flexible and modular reactor for the liquid phase reduction with a heterogeneous slurry catalyst was designed that can be adapted for reduction of a range of nitro compounds. The generic process provides the possibilities of swapping out a reactor or work up technology as required. The equipments of the generic process should be also able to operate at wider range of operational variables making it suitable for a range of substrates. The SAM identifies the necessary changes to a generic process and plant in order to adapt it for a given substrate. The objectives of this presentation is to highlight the design of a generic nitro reduction process and to demonstrate the application of this generic process on a pharmaceutical manufacturing case study involving the nitro reduction of 6-Nitroquinoline
    corecore