11 research outputs found

    Achievement of therapeutic antibiotic exposures using Bayesian dosing software in critically unwell children and adults with sepsis

    Get PDF
    PURPOSE: Early recognition and effective treatment of sepsis improves outcomes in critically ill patients. However, antibiotic exposures are frequently suboptimal in the intensive care unit (ICU) setting. We describe the feasibility of the Bayesian dosing software Individually Designed Optimum Dosing Strategies (ID-ODS™), to reduce time to effective antibiotic exposure in children and adults with sepsis in ICU. METHODS: A multi-centre prospective, non-randomised interventional trial in three adult ICUs and one paediatric ICU. In a pre-intervention Phase 1, we measured the time to target antibiotic exposure in participants. In Phase 2, antibiotic dosing recommendations were made using ID-ODS™, and time to target antibiotic concentrations were compared to patients in Phase 1 (a pre-post-design). RESULTS: 175 antibiotic courses (Phase 1 = 123, Phase 2 = 52) were analysed from 156 participants. Across all patients, there was no difference in the time to achieve target exposures (8.7 h vs 14.3 h in Phase 1 and Phase 2, respectively, p = 0.45). Sixty-one courses in 54 participants failed to achieve target exposures within 24 h of antibiotic commencement (n = 36 in Phase 1, n = 18 in Phase 2). In these participants, ID-ODS™ was associated with a reduction in time to target antibiotic exposure (96 vs 36.4 h in Phase 1 and Phase 2, respectively, p < 0.01). These patients were less likely to exhibit subtherapeutic antibiotic exposures at 96 h (hazard ratio (HR) 0.02, 95% confidence interval (CI) 0.01-0.05, p < 0.01). There was no difference observed in in-hospital mortality. CONCLUSIONS: Dosing software may reduce the time to achieve target antibiotic exposures. It should be evaluated further in trials to establish its impact on clinical outcomes

    Optimising Treatment Outcomes for Children and Adults Through Rapid Genome Sequencing of Sepsis Pathogens. A Study Protocol for a Prospective, Multi-Centre Trial (DIRECT)

    Get PDF
    BackgroundSepsis contributes significantly to morbidity and mortality globally. In Australia, 20,000 develop sepsis every year, resulting in 5,000 deaths, and more than AUD$846 million in expenditure. Prompt, appropriate antibiotic therapy is effective in improving outcomes in sepsis. Conventional culture-based methods to identify appropriate therapy have limited yield and take days to complete. Recently, nanopore technology has enabled rapid sequencing with real-time analysis of pathogen DNA. We set out to demonstrate the feasibility and diagnostic accuracy of pathogen sequencing direct from clinical samples, and estimate the impact of this approach on time to effective therapy when integrated with personalised software-guided antimicrobial dosing in children and adults on ICU with sepsis.MethodsThe DIRECT study is a pilot prospective, non-randomized multicentre trial of an integrated diagnostic and therapeutic algorithm combining rapid direct pathogen sequencing and software-guided, personalised antibiotic dosing in children and adults with sepsis on ICU.Participants and interventionsDIRECT will collect microbiological and pharmacokinetic samples from approximately 200 children and adults with sepsis admitted to one of four ICUs in Brisbane. In Phase 1, we will evaluate Oxford Nanopore Technologies MinION sequencing direct from blood in 50 blood culture-proven sepsis patients recruited from consecutive patients with suspected sepsis. In Phase 2, a further 50 consecutive patients with suspected sepsis will be recruited in whom MinION sequencing will be combined with Bayesian software-guided (ID-ODS) personalised antimicrobial dosing.Outcome measuresThe primary outcome is time to effective antimicrobial therapy, defined as trough drug concentrations above the MIC of the pathogen. Secondary outcomes are diagnostic accuracy of MinION sequencing from whole blood, time to pathogen identification and susceptibility testing using sequencing direct from whole blood and from positive blood culture broth.DiscussionRapid pathogen sequencing coupled with antimicrobial dosing software has great potential to overcome the limitations of conventional diagnostics which often result in prolonged inappropriate antimicrobial therapy. Reduced time to optimal antimicrobial therapy may reduce sepsis mortality and ICU length of stay. This pilot study will yield key feasibility data to inform further, urgently needed sepsis studies. Phase 2 of the trial protocol is registered with the ANZCTR (ACTRN12620001122943).Trial registrationRegistered with the Australia New Zealand Clinical Trials Registry Number ACTRN1262000112294

    Mefloquine

    No full text
    Mefloquine is available as a hydrochloride salt of the structure depicted in Figure 178.1 (Roche, 2003a). Its official chemical name is (R*, S*)-(±)-α-2-piperidnyl-2,8-bis (trifluromethyl)- 4-quinolinemethanol hydrochloride (Roche, 2003a). Mefloquine is a white crystalline solid with a molecular weight of 418 (Roche, 2003a). The compound has two chiral centers, and there are four isomeric forms. The commercially available formulation is a racemate of the 11R,2‘S and 11S,2‘R enantiomers

    Evaluating the economic effects of genomic sequencing of pathogens to prioritise hospital patients competing for isolation beds

    No full text
    Objective. This study compared the costs and patient movements of a new hospital protocol to discontinue contact precautions for patients with non-multiresistant methicillin-resistant Staphylococcus aureus (nmMRSA), based on wholegenome sequencing (WGS) of pathogens with current practice. Methods. A hybrid simulation model was constructed and analysed over a 12-month time horizon. Six multidrugresistant organisms and influenza were modelled concurrently where infected patients competed for isolation beds. Model inputs included pathogen incidence, resources for WGS, staff and contact precautions, hospital processes, room allocations and their associated costs. Data were sourced from aggregated records of patient admissions during 2017-18, clinical records and published reports. Results. The WGS protocol resulted in 389 patients isolated (44% of current practice), 5223 'isolation bed days' (56%) and 268 closed-bed days (88%). Over 1 year, the mean (±s.d.) total cost for the WGS protocol was A749243±126667;comparedwithcurrentpractice,theoverallcostsavingswereA749 243 ± 126 667; compared with current practice, the overall cost savings were A690 864 ± 300 464. Conclusion. Using WGS to inform infection control teams of pathogen transmission averts patients from isolation rooms and reduces significant resources involved in implementing contact precautions

    Multifocal abscesses due to multiresistant Escherichia coli after trans rectal ultrasound-guided prostate biopsy

    No full text
    We report an unusual case of multidrug-resistant Escherichia coli bacteraemia causing multifocal abscesses, septic arthritis, lumbar discitis and osteomyelitis after transrectal ultrasound-guided prostate biopsy, requiring restricted antibiotics and surgical debridement. This case highlights the importance of risk assessment, prophylactic and therapeutic antimicrobial use, and urology infectious diseases collaboration to improve clinical outcomes after such procedures

    Cost-effectiveness analysis of whole-genome sequencing during an outbreak of carbapenem-resistant Acinetobacter baumannii

    No full text
    Background: Whole-genome sequencing (WGS) shotgun metagenomics (metagenomics) attempts to sequence the entire genetic content straight from the sample. Diagnostic advantages lie in the ability to detect unsuspected, uncultivatable, or very slow-growing organisms. Objective: To evaluate the clinical and economic effects of using WGS and metagenomics for outbreak management in a large metropolitan hospital. Design: Cost-effectiveness study. Setting: Intensive care unit and burn unit of large metropolitan hospital. Patients: Simulated intensive care unit and burn unit patients. Methods: We built a complex simulation model to estimate pathogen transmission, associated hospital costs, and quality-adjusted life years (QALYs) during a 32-month outbreak of carbapenem-resistant Acinetobacter baumannii (CRAB). Model parameters were determined using microbiology surveillance data, genome sequencing results, hospital admission databases, and local clinical knowledge. The model was calibrated to the actual pathogen spread within the intensive care unit and burn unit (scenario 1) and compared with early use of WGS (scenario 2) and early use of WGS and metagenomics (scenario 3) to determine their respective cost-effectiveness. Sensitivity analyses were performed to address model uncertainty. Results: On average compared with scenario 1, scenario 2 resulted in 14 fewer patients with CRAB, 59 additional QALYs, and 75,099costsavings.Scenario3,comparedwithscenario1,resultedin18fewerpatientswithCRAB,74additionalQALYs,and75,099 cost savings. Scenario 3, compared with scenario 1, resulted in 18 fewer patients with CRAB, 74 additional QALYs, and 93,822 in hospital cost savings. The likelihoods that scenario 2 and scenario 3 were cost-effective were 57% and 60%, respectively. Conclusions: The use of WGS and metagenomics in infection control processes were predicted to produce favorable economic and clinical outcomes.</p

    Rapid diagnosis of Capnocytophaga canimorsus septic shock in an immunocompetent individual using real-time Nanopore sequencing: a case report

    Get PDF
    Rapid diagnosis and appropriate treatment is imperative in bacterial sepsis due increasing risk of mortality with every hour without appropriate antibiotic therapy. Atypical infections with fastidious organisms may take more than 4 days to diagnose leading to calls for improved methods for rapidly diagnosing sepsis. Capnocytophaga canimorsus is a slow-growing, fastidious gram-negative bacillus which is a common commensal within the mouths of dogs, but rarely cause infections in humans. C. canimorsus sepsis risk factors include immunosuppression, alcoholism and elderly age. Here we report on the application of emerging nanopore sequencing methods to rapidly diagnose an atypical case of C. canimorsus septic shock.A 62 year-old female patient was admitted to an intensive care unit with septic shock and multi-organ failure six days after a reported dog bite. Blood cultures were unable to detect a pathogen after 3 days despite observed intracellular bacilli on blood smears. Real-time nanopore sequencing was subsequently employed on whole blood to detect Capnocytophaga canimorsus in 19 h. The patient was not immunocompromised and did not have any other known risk factors. Whole-genome sequencing of clinical sample and of the offending dog's oral swabs showed near-identical C. canimorsus genomes. The patient responded to antibiotic treatment and was discharged from hospital 31 days after admission.Use of real-time nanopore sequencing reduced the time-to-diagnosis of Capnocytophaga canimorsus in this case from 6.25 days to 19 h. Capnocytophaga canimorsus should be considered in cases of suspected sepsis involving cat or dog contact, irrespective of the patient's known risk factors

    Epidemiology, management and outcomes of Cryptococcus gattii infections: A 22-year cohort.

    No full text
    BackgroundCryptococcus gattii is a globally endemic pathogen causing disease in apparently immune-competent hosts. We describe a 22-year cohort study from Australia's Northern Territory to evaluate trends in epidemiology and management, and outcome predictors.MethodsA retrospective cohort study of all C. gattii infections at the northern Australian referral hospital 1996-2018 was conducted. Cases were defined as confirmed (culture-positive) or probable. Demographic, clinical and outcome data were extracted from medical records.Results45 individuals with C. gattii infection were included: 44 Aboriginal Australians; 35 with confirmed infection; none HIV positive out of 38 tested. Multifocal disease (pulmonary and central nervous system) occurred in 20/45 (44%). Nine people (20%) died within 12 months of diagnosis, five attributed directly to C. gattii. Significant residual disability was evident in 4/36 (11%) survivors. Predictors of mortality included: treatment before the year 2002 (4/11 versus 1/34); interruption to induction therapy (2/8 versus 3/37) and end-stage kidney disease (2/5 versus 3/40). Prolonged antifungal therapy was the standard approach in this cohort, with median treatment duration being 425 days (IQR 166-715). Ten individuals had adjunctive lung resection surgery for large pulmonary cryptococcomas (median diameter 6cm [range 2.2-10cm], versus 2.8cm [1.2-9cm] in those managed non-operatively). One died post-operatively, and 7 had thoracic surgical complications, but ultimately 9/10 (90%) treated surgically were cured compared with 10/15 (67%) who did not have lung surgery. Four patients were diagnosed with immune reconstitution inflammatory syndrome which was associated with age 1:512.ConclusionC. gattii infection remains a challenging condition but treatment outcomes have significantly improved over 2 decades, with eradication of infection the norm. Adjunctive surgery for the management of bulky pulmonary C. gattii infection appears to increase the likelihood of durable cure and likely reduces the required duration of antifungal therapy

    Genomic surveillance, characterization and intervention of a polymicrobial multidrug-resistant outbreak in critical care

    No full text
    Background. Infections caused by carbapenem-resistant Acinetobacter baumannii (CR-Ab) have become increasingly prevalent in clinical settings and often result in significant morbidity and mortality due to their multidrug resistance (MDR). Here we present an integrated whole-genome sequencing (WGS) response to a persistent CR-Ab outbreak in a Brisbane hospital between 2016-2018. Methods. A. baumannii, Klebsiella pneumoniae, Serratia marcescens and Pseudomonas aeruginosa isolates were sequenced using the Illumina platform primarily to establish isolate relationships based on core-genome SNPs, MLST and antimicrobial resistance gene profiles. Representative isolates were selected for PacBio sequencing. Environmental metagenomic sequencing with Illumina was used to detect persistence of the outbreak strain in the hospital. Results. In response to a suspected polymicrobial outbreak between May to August of 2016, 28 CR-Ab (and 21 other MDR Gram-negative bacilli) were collected from Intensive Care Unit and Burns Unit patients and sent for WGS with a 7 day turn-around time in clinical reporting. All CR-Ab were sequence type (ST)1050 (Pasteur ST2) and within 10 SNPs apart, indicative of an ongoing outbreak, and distinct from historical CR-Ab isolates from the same hospital. Possible transmission routes between patients were identified on the basis of CR-Ab and K. pneumoniae SNP profiles. Continued WGS surveillance between 2016 to 2018 enabled suspected outbreak cases to be refuted, but a resurgence of the outbreak CR-Ab mid-2018 in the Burns Unit prompted additional screening. Environmental metagenomic sequencing identified the hospital plumbing as a potential source. Replacement of the plumbing and routine drain maintenance resulted in rapid resolution of the secondary outbreak and significant risk reduction with no discernable transmission in the Burns Unit since. Conclusion. We implemented a comprehensive WGS and metagenomics investigation that resolved a persistent CR-Ab outbreak in a critical care setting.</p

    נעם אמרי 1

    No full text
    Objectives: Knowledge of contemporary epidemiology of candidaemia is essential.We aimed to identify changes since 2004 in incidence, species epidemiology and antifungal susceptibilities of Candida spp. causing candidaemia in Australia. Methods: These data were collected from nationwide active laboratory-based surveillance for candidaemia over 1 year (within 2014-2015). Isolate identification was by MALDI-TOF MS supplemented by DNA sequencing. Antifungal susceptibility testing was performed using Sensititre YeastOne. Results: A total of 527 candidaemia episodes (yielding 548 isolates) were evaluable. The mean annual incidence was 2.41/10 population. The median patient agewas 63 years (56% of cases occurred in males). Of 498 isolates with confirmed species identity, Candida albicans was the most common (44.4%) followed by Candida glabrata complex (26.7%) and Candida parapsilosis complex (16.5%). Uncommon Candida species comprised 25 (5%) isolates. Overall, C. albicans (>99%) and C. parapsilosis (98.8%) were fluconazole susceptible. However, 16.7% (4 of 24) of Candida tropicalis were fluconazole- and voriconazole-resistant and were non-WT to posaconazole. Of C. glabrata isolates, 6.8% were resistant/non-WT to azoles; only one isolate was classed as resistant to caspofungin (MIC of 0.5 mg/L) by CLSI criteria, but was micafungin and anidulafungin susceptible. There was no azole/ echinocandin co-resistance. Conclusions:We report an almost 1.7-fold proportional increase in C. glabrata candidaemia (26.7% versus 16% in 2004) in Australia. Antifungal resistance was generally uncommon, but azole resistance (16.7% of isolates) amongst C. tropicalis may be emerging
    corecore