7,390 research outputs found

    Towards a Finite-NN Hologram

    Full text link
    We suggest that holographic tensor models related to SYK are viable candidates for exactly (ie., non-perturbatively in NN) solvable holographic theories. The reason is that in these theories, the Hilbert space is a spinor representation, and the Hamiltonian (at least in some classes) can be arranged to commute with the Clifford level. This makes the theory solvable level by level. We demonstrate this for the specific case of the uncolored O(n)3O(n)^3 tensor model with arbitrary even nn, and reduce the question of determining the spectrum and eigenstates to an algebraic equation relating Young tableaux. Solving this reduced problem is conceptually trivial and amounts to matching the representations on either side, as we demonstrate explicitly at low levels. At high levels, representations become bigger, but should still be tractable. None of our arguments require any supersymmetry.Comment: 16 page

    Coded Caching based on Combinatorial Designs

    Full text link
    We consider the standard broadcast setup with a single server broadcasting information to a number of clients, each of which contains local storage (called \textit{cache}) of some size, which can store some parts of the available files at the server. The centralized coded caching framework, consists of a caching phase and a delivery phase, both of which are carefully designed in order to use the cache and the channel together optimally. In prior literature, various combinatorial structures have been used to construct coded caching schemes. In this work, we propose a binary matrix model to construct the coded caching scheme. The ones in such a \textit{caching matrix} indicate uncached subfiles at the users. Identity submatrices of the caching matrix represent transmissions in the delivery phase. Using this model, we then propose several novel constructions for coded caching based on the various types of combinatorial designs. While most of the schemes constructed in this work (based on existing designs) have a high cache requirement (uncached fraction being Θ(1K)\Theta(\frac{1}{\sqrt{K}}) or Θ(1K)\Theta(\frac{1}{K}), KK being the number of users), they provide a rate that is either constant or decreasing (O(1K)O(\frac{1}{K})) with increasing KK, and moreover require competitively small levels of subpacketization (being O(Ki),1i3O(K^i), 1\leq i\leq 3), which is an extremely important parameter in practical applications of coded caching. We mark this work as another attempt to exploit the well-developed theory of combinatorial designs for the problem of constructing caching schemes, utilizing the binary caching model we develop.Comment: 10 pages, Appeared in Proceedings of IEEE ISIT 201

    Massive Scattering Amplitudes in Six Dimensions

    Full text link
    We show that a natural spinor-helicity formalism that can describe massive scattering amplitudes exists in D=6D=6 dimensions. This is arranged by having helicity spinors carry an index in the Dirac spinor {\bf 4} of the massive little group, SO(5)Sp(4)SO(5) \sim Sp(4). In the high energy limit, two separate kinds of massless helicity spinors emerge as required for consistency with arXiv:0902.0981, with indices in the two SU(2)SU(2)'s of the massless little group SO(4)SO(4). The tensors of 4{\bf 4} lead to particles with arbitrary spin, and using these and demanding consistent factorization, we can fix 33- and 44-point tree amplitudes of arbitrary masses and spins: we provide examples. We discuss the high energy limit of scattering amplitudes and the Higgs mechanism in this language, and make some preliminary observations about massive BCFW recursion.Comment: 37 pages; v2: minor improvements, JHEP versio

    Contrasting SYK-like Models

    Full text link
    We contrast some aspects of various SYK-like models with large-NN melonic behavior. First, we note that ungauged tensor models can exhibit symmetry breaking, even though these are 0+1 dimensional theories. Related to this, we show that when gauged, some of them admit no singlets, and are anomalous. The uncolored Majorana tensor model with even NN is a simple case where gauge singlets can exist in the spectrum. We outline a strategy for solving for the singlet spectrum, taking advantage of the results in arXiv:1706.05364, and reproduce the singlet states expected in N=2N=2. In the second part of the paper, we contrast the random matrix aspects of some ungauged tensor models, the original SYK model, and a model due to Gross and Rosenhaus. The latter, even though disorder averaged, shows parallels with the Gurau-Witten model. In particular, the two models fall into identical Andreev ensembles as a function of NN. In an appendix, we contrast the (expected) spectra of AdS2_2 quantum gravity, SYK and SYK-like tensor models, and the zeros of the Riemann Zeta function.Comment: 45 pages, 17 figures; v2: minor improvements and rearrangements, refs adde

    Electrochemical oxidation of ethanol at ruthenium at oxide coated titanium electrode

    Get PDF
    Electrochemical oxidation of ethanol in 0.5 M sulphuric acid at ruthenium oxide coated titanium electrode was studied. Results of galvanostatic polarization and chronopotentiometric studies are reported. The data indicate the process to be adsorption controlled and accordingly a probable mechanism is propose

    Removal of Interferences from Partial Discharge Pulses using Wavelet Transform

    Get PDF
     It is essential to detect partial discharge (PD) as a symptom of insulation breakdown in high voltage (HV) applications. However accuracy of such measurement is often degraded due to the existence of noise in the signal. Wavelet Transform (WT) seems to be more suitable than traditional Fourier Transform in analyzing signals with interesting transient information such as partial discharge (PD) signals. In this paper a WT method with soft thresholding is used for signal denoising. PD signals and corona obtained from actual measurements with different voltage magnitudes are processed. Processed signals show the better result.

    Immunology of occupational lung diseases caused by dust: an overview

    Get PDF
    The lungs are exposed to numerous injurious substances.Such injury may be the result of immunological or non-immunological mechanisms. The lung clears itself of inhaled particles by means of ciliated cells lining the airways and the macrophages.The latter play an important role in the immune process as well.Inorganic particles are ingested by macrophages and if found inert are transported for eventual expulsion.Particles such as silica are poorly handled by macrophages, they not only damage the macrophages but also impair their function. Others, such as asbestos, may stimulate fibrosis. Endogenous factors such as the presence of auto-antibodies (rheumatoid factor or anti-nuclear factor) alter the response of the host to inhaled particles.The pathological changes caused by handling inorganic dusts include intestitial fibrosis, nodular fibrosis or macule formation leading to emphysema.Occupational asthma a occurs when individuals are exposed to dusts during the course of their work. The lung responds differently to organic dust. T cells and complement are important elements in handling organic dust.The role of inhaled steroids which have no significant systemic effects in the prevention of certain occupational asthmas is worth evaluating, apart from control measures which minimise the exposure
    corecore