34 research outputs found

    Shigella apyrase – a novel variant of bacterial acid phosphatases?

    Get PDF
    AbstractA virulence-associated ATP diphosphohydrolase activity in the periplasm of Shigella, identified as apyrase, was found to be markedly similar to bacterial non-specific acid phosphatases in primary structure. When the Shigella apyrase sequence was threaded in to the recently published 3D structure of the highly similar (73%) Escherichia blattae acid phosphatase it was found to have a highly overlapping 3D structure. Our analysis, which included assays for phosphatase, haloperoxidase and catalase activities, led us to hypothesize that Shigella apyrase might belong to a new class of pyrophosphatase originating as one more variant in the family of bacterial non-specific acid phosphatases. It revealed interesting structure–function relationships and probable roles relevant to pathogenesis

    Reply

    No full text

    Structure-property Correlations in Al 7050 and Al 7055 High-strength Aluminum Alloys

    No full text
    The 7XXX series age-hardenable high-strength aluminum alloys find useful applications in the field of aerospace engineering. Constant efforts are being made to tailor the mechanical and corrosion properties of these alloys as per requirements for a particular application. These properties are a function of factors like microstructure, chemical composition and processing parameters. An effort has been made to collate the information available from different studies conducted on alloys Al 7050 and Al 7055. Databases were created to consolidate the information about microstructure, mechanical properties and corrosion behavior for the two alloys. Existing models were utilized to predict strength and fracture toughness for these alloys and these models were validated using experimental values and a qualitative evaluation was made for the corrosion behavior of these alloys. Available data were utilized to prepare maps that are intended to serve as guides to design aluminum alloys with desired combination of properties

    Microstructure and Mechanical Behavior of Friction Stir Processed Ultrafine Grained Al-Mg-Sc Alloy

    No full text
    Twin-roll cast (TRC) Al-Mg-Sc alloy was frictionstir processed (FSP) to obtain ultrafine grained (UFG) microstructure. Average grain size of TRC alloy in as-received (AR) condition was 19.0 ± 27.2 μm. The grain size reduced to 0.73 ± 0.44 μm after FSP. About 80% of the grains were smaller than 1 μm in FSP condition. FSP resulted into 80% of the grain boundaries to have high angle grain boundary (HAGBs) character. Uniaxial tensile testing of UFG alloy showed an increase in yield strength (YS) and ultimate tensile strength (UTS) (by ∼100 MPa each) of the alloy with a very marginal decrease in total and uniform elongation (total - 27% in AR and 24% in UFG and uniform - 19% in AR and 14% in UFG). A theoretical model predicted that the grain refinement cannot take place via discontinuous dynamic recrystallization. Zener pinning model correctly predicted the grain size distribution for UFG alloy. From work hardening behaviors in both the conditions, it was concluded that grain boundary spacing is more important than the character of grain boundaries for influencing extent of uniform deformation of an allo

    Safety and Tolerability of Continuous Inhaled Iloprost Therapy for Severe Pulmonary Hypertension in Neonates and Infants

    No full text
    This is a single-center retrospective study to assess the safety and tolerability of continuous inhaled iloprost use as rescue therapy for refractory pulmonary hypertension (PH) in critically ill neonates and infants. A retrospective chart review was performed on 58 infants and data were collected at baseline, 1, 6, 12, 24, 48 and 72 h of iloprost initiation. Primary outcomes were change in heart rate (HR), fraction of inspired oxygen (FiO2), mean airway pressures (MAP), blood pressure (BP) and oxygenation index (OI). Secondary outcomes were need for extracorporeal membrane oxygenation (ECMO) and death. 51 patients treated for >6 h were analyzed in 2 age groups, neonate (≤28 days: n = 32) and infant (29–365 days: n = 19). FiO2 (p p = 0.01) decreased, while there were no significant changes in MAP, BP and HR. Of the fifteen patients placed on ECMO, seven were bridged off ECMO on iloprost and eight died. Twenty-four out of fifty-one patients (47%) recovered without requiring ECMO, while twelve (23%) died. Iloprost as add-on therapy for refractory PH in critically ill infants in the NICU has an acceptable tolerability and safety profile. Large prospective multicenter studies using iloprost in the neonatal ICU are necessary to validate these results

    The Effect of Friction Stir Processing on the Microstructure and Mechanical Properties of Equal Channel Angular Pressed 5052Al Alloy Sheet

    No full text
    In this study, equal channel angular pressed (ECAP) 5052Al alloy sheet was friction stir processed (FSP). This was carried out to understand the effect of FSP on the microstructure and mechanical properties of the ECAP sheet. FSP led to further grain refinement and a tighter distribution of grains. Fraction of high-angle grain boundaries changed from 15% in ECAP condition to more than 70% after FSP. Although FSP caused lowering of yield strength (YS) and ultimate tensile strength (UTS), it resulted into a substantial improvement in uniform deformation region of the tensile sample (from 1.3% in as-received condition to 12.9% in FSP condition). Strain hardening rate (SHR) analysis showed lowering of recovery rate on FSP. A static grain growth model correctly predicted the average grain size obtained after FSP. Existing grain boundary, solid solution, and dislocation strengthening models were used to estimate the YS of 5052Al alloy in both the conditions. The strengthening model was able to predict the YS of the alloy in as-received and FSP conditions very well

    Critical Grain Size for Change in Deformation Behavior in Ultrafine Grained Al-Mg-Sc Alloy

    No full text
    Experimental evaluation of critical grain size for the change in deformation behavior from strain hardening to strain softening in ultrafine grained (UFG) Al-Mg-Sc was carried out. UFG alloy was processed using friction stir processing (FSP). Two different average grain sizes were obtained by changing the FSP parameters. UFG alloy with grain size larger than the subgrain size showed sufficient strain hardening during tensile testing, whereas smaller grain size material exhibited strain softening

    Reply

    No full text
    corecore