161 research outputs found

    Nano-Vesicle (Mis)Communication in Senescence-Related Pathologies

    Get PDF
    Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising of exosomes, apoptotic bodies, and microvesicles. Of the extracellular vesicles, exosomes are the most widely sorted and extensively explored for their contents and function. The size of the nanovesicular structures (exosomes) range from 30 to 140 nm and are present in various biological fluids such as saliva, plasma, urine etc. These cargo-laden extracellular vesicles arise from endosome-derived multivesicular bodies and are known to carry proteins and nucleic acids. Exosomes are involved in multiple physiological and pathological processes, including cellular senescence. Exosomes mediate signaling crosstalk and play a critical role in cell-cell communications. Exosomes have evolved as potential biomarkers for aging-related diseases. Aging, a physiological process, involves a progressive decline of function of organs with a loss of homeostasis and increasing probability of illness and death. The review focuses on the classic view of exosome biogenesis, biology, and age-associated changes. Owing to their ability to transport biological information among cells, the review also discusses the interplay of senescent cell-derived exosomes with the aging process, including the susceptibility of the aging population to COVID-19 infections

    SCALABLE CONTINUOUS-FLOW PROCESSES FOR MANUFACTURING PLASMONIC NANOMATERIALS

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Cell-free Embryonic Stem Cell Extract-mediated Derivation of Multi-potent Stem Cells from NIH3T3 Fibroblasts for Functional and Anatomical Ischemic Tissue Repair

    Get PDF
    The oocyte-independent generation of multipotent stem cells is one of the goals in regenerative medicine. We report that upon exposure to mouse ES cell (ESC) extracts, reversibly permeabilized NIH3T3 cells undergo de-differentiation followed by stimulus-induced re-differentiation into multiple lineage cell types. Genome-wide expression profiling revealed significant differences between NIH3T3 and ESC-extract treated NIH3T3 cells including re-activation of ESC specific transcripts. Epigenetically, ESC extracts induced CpG de-methylation of Oct4 promoter, hyper-acetylation of histones 3 and 4 and decreased lysine 9 (K-9) dimethylation of histone 3. In mouse models of surgically-induced hind limb ischemia (HLI) or acute myocardial infarction (AMI) transplantation of reprogrammed NIH3T3 cells significantly improved post-injury physiological functions and showed antomical evidence of engraftment and trans-differentiation into skeletal muscle, endothelial cell and cardiomyocytes. These data provide evidence for the generation of functional multi-potent stem like cells from terminally differentiated somatic cells without the introduction of trans-genes or ESC fusion

    Enhanced Cardiac Regenerative Ability of Stem Cells After Ischemia-Reperfusion Injury Role of Human CD34+ Cells Deficient in MicroRNA-377

    Get PDF
    AbstractBackgroundMicroRNA (miR) dysregulation in the myocardium has been implicated in cardiac remodeling after injury or stress.ObjectivesThe aim of this study was to explore the role of miR in human CD34+ cell (hCD34+) dysfunction in vivo after transplantation into the myocardium under ischemia-reperfusion (I-R) conditions.MethodsIn response to inflammatory stimuli, the miR array profile of endothelial progenitor cells was analyzed using a polymerase chain reaction–based miR microarray. miR-377 expression was assessed in myocardial tissue from human patients with heart failure (HF). We investigated the effect of miR-377 inhibition on an hCD34+ cell angiogenic proteome profile in vitro and on cardiac repair and function after I-R injury in immunodeficient mice.ResultsThe miR array data from endothelial progenitor cells in response to inflammatory stimuli indicated changes in numerous miR, with a robust decrease in the levels of miR-377. Human cardiac biopsies from patients with HF showed significant increases in miR-377 expression compared with nonfailing control hearts. The proteome profile of hCD34+ cells transfected with miR-377 mimics showed significant decrease in the levels of proangiogenic proteins versus nonspecific control–transfected cells. We also validated that serine/threonine kinase 35 is a target of miR-377 using a dual luciferase reporter assay. In a mouse model of myocardial I-R, intramyocardial transplantation of miR-377 silenced hCD34+ cells in immunodeficient mice, promoting neovascularization (at 28 days, post–I-R) and lower interstitial fibrosis, leading to improved left ventricular function.ConclusionsThese findings indicate that HF increased miR-377 expression in the myocardium, which is detrimental to stem cell function, and transplantation of miR-377 knockdown hCD34+ cells into ischemic myocardium promoted their angiogenic ability, attenuating left ventricular remodeling and cardiac fibrosis

    Robust processor allocation for independent tasks when dollar cost for processors is a constraint

    Get PDF
    Includes bibliographical references (pages 9-10).In a distributed heterogeneous computing system, the resources have different capabilities and tasks have different requirements. Different classes of machines used in such systems typically vary in dollar cost based on their computing efficiencies. Makespan (defined as the completion time for an entire set of tasks) is often the performance feature that is optimized. Resource allocation is often done based on estimates of the computation time of each task on each class of machines. Hence, it is important that makespan be robust against errors in computation time estimates. The dollar cost to purchase the machines for use can be a constraint such that only a subset of the machines available can be purchased. The goal of this study is to: (1) select a subset of all the machines available so that the cost constraint for the machines is satisfied, and (2) find a static mapping of tasks so that the robustness of the desired system feature, makespan, is maximized against the errors in task execution time estimates. Six heuristic techniques to this problem are presented and evaluated

    Baseline factors associated with early and late death in intracerebral haemorrhage survivors

    Get PDF
    Background and purpose: The aim of this study was to determine whether early and late death are associated with different baseline factors in intracerebral haemorrhage (ICH) survivors. Methods: This was a secondary analysis of the multicentre prospective observational CROMIS‐2 ICH study. Death was defined as ‘early’ if occurring within 6 months of study entry and ‘late’ if occurring after this time point. Results: In our cohort (n = 1094), there were 306 deaths (per 100 patient‐years: absolute event rate, 11.7; 95% confidence intervals, 10.5–13.1); 156 were ‘early’ and 150 ‘late’. In multivariable analyses, early death was independently associated with age [per year increase; hazard ratio (HR), 1.05, P = 0.003], history of hypertension (HR, 1.89, P = 0.038), pre‐event modified Rankin scale score (per point increase; HR, 1.41, P < 0.0001), admission National Institutes of Health Stroke Scale score (per point increase; HR, 1.11, P < 0.0001) and haemorrhage volume >60 mL (HR, 4.08, P < 0.0001). Late death showed independent associations with age (per year increase; HR, 1.04, P = 0.003), pre‐event modified Rankin scale score (per point increase; HR, 1.42, P = 0.001), prior anticoagulant use (HR, 2.13, P = 0.028) and the presence of intraventricular extension (HR, 1.73, P = 0.033) in multivariable analyses. In further analyses where time was treated as continuous (rather than dichotomized), the HR of previous cerebral ischaemic events increased with time, whereas HRs for Glasgow Coma Scale score, National Institutes of Health Stroke Scale score and ICH volume decreased over time. Conclusions: We provide new evidence that not all baseline factors associated with early mortality after ICH are associated with mortality after 6 months and that the effects of baseline variables change over time. Our findings could help design better prognostic scores for later death after ICH

    Cerebral microbleeds and intracranial haemorrhage risk in patients anticoagulated for atrial fibrillation after acute ischaemic stroke or transient ischaemic attack (CROMIS-2):a multicentre observational cohort study

    Get PDF
    Background: Cerebral microbleeds are a potential neuroimaging biomarker of cerebral small vessel diseases that are prone to intracranial bleeding. We aimed to determine whether presence of cerebral microbleeds can identify patients at high risk of symptomatic intracranial haemorrhage when anticoagulated for atrial fibrillation after recent ischaemic stroke or transient ischaemic attack. Methods: Our observational, multicentre, prospective inception cohort study recruited adults aged 18 years or older from 79 hospitals in the UK and one in the Netherlands with atrial fibrillation and recent acute ischaemic stroke or transient ischaemic attack, treated with a vitamin K antagonist or direct oral anticoagulant, and followed up for 24 months using general practitioner and patient postal questionnaires, telephone interviews, hospital visits, and National Health Service digital data on hospital admissions or death. We excluded patients if they could not undergo MRI, had a definite contraindication to anticoagulation, or had previously received therapeutic anticoagulation. The primary outcome was symptomatic intracranial haemorrhage occurring at any time before the final follow-up at 24 months. The log-rank test was used to compare rates of intracranial haemorrhage between those with and without cerebral microbleeds. We developed two prediction models using Cox regression: first, including all predictors associated with intracranial haemorrhage at the 20% level in univariable analysis; and second, including cerebral microbleed presence and HAS-BLED score. We then compared these with the HAS-BLED score alone. This study is registered with ClinicalTrials.gov, number NCT02513316. Findings: Between Aug 4, 2011, and July 31, 2015, we recruited 1490 participants of whom follow-up data were available for 1447 (97%), over a mean period of 850 days (SD 373; 3366 patient-years). The symptomatic intracranial haemorrhage rate in patients with cerebral microbleeds was 9·8 per 1000 patient-years (95% CI 4·0–20·3) compared with 2·6 per 1000 patient-years (95% CI 1·1–5·4) in those without cerebral microbleeds (adjusted hazard ratio 3·67, 95% CI 1·27–10·60). Compared with the HAS-BLED score alone (C-index 0·41, 95% CI 0·29–0·53), models including cerebral microbleeds and HAS-BLED (0·66, 0·53–0·80) and cerebral microbleeds, diabetes, anticoagulant type, and HAS-BLED (0·74, 0·60–0·88) predicted symptomatic intracranial haemorrhage significantly better (difference in C-index 0·25, 95% CI 0·07–0·43, p=0·0065; and 0·33, 0·14–0·51, p=0·00059, respectively). Interpretation: In patients with atrial fibrillation anticoagulated after recent ischaemic stroke or transient ischaemic attack, cerebral microbleed presence is independently associated with symptomatic intracranial haemorrhage risk and could be used to inform anticoagulation decisions. Large-scale collaborative observational cohort analyses are needed to refine and validate intracranial haemorrhage risk scores incorporating cerebral microbleeds to identify patients at risk of net harm from oral anticoagulation. Funding: The Stroke Association and the British Heart Foundation

    A Medicinal Chemist’s Guide to Molecular Interactions

    Get PDF
    corecore