208 research outputs found

    IDRCNN: A Novel Deep Learning Network Model for Pancreatic Ductal Adenocarcinoma Detection on Computed Tomography

    Get PDF
    Early identification of pancreatic ductal adenocarcinoma (PDAC) improves prognosis. Still, it is difficult since lesions are generally smaller and difficult to define on contrast-enhanced computed tomography images (CE-CT). Ineffective PDAC diagnosis has recently been achieved using deep learning models, but the output localized and identified images are of poor quality. This research focuses on small lesions and presents a new, efficient automatic deep-learning network model for PDAC detection. The Improved Deep Residual Convolutional Neural Network (IDRCNN) detects PDAC. The hyperparameter is optimized using the Tunicate Swarm Optimization Algorithm (TSOA) algorithm. A better diagnosis is made due to segmenting the surrounding anatomy structure effects, such as PD. We train a proposed IDRCNN model for segmenting and detecting lesions automatically using CE-CT images. Two more IDRCNN models are trained with the aim of investigating the effects of anatomy integration: (i) segmentation of tumor and pancreas (IDRCNN_TP), and (ii) segmentation of pancreatic Duct (IDRCNN_PD). The three networks\u27 performance was assessed using an external, publicly available test set. Due to its effective classification results, the proposed method produces improved identification results for automated preliminary diagnosis of PDAC in cervical cancer clinics and hospitals. The performance of the proposed method is evaluated using a publicly assessable CT image dataset. It outperforms the existing state-of-the-art methods and achieved 98.67% accuracy, 97.26% recall, 98.52% precision, 97.65% sensitivity, and 98.45% specificity for pancreatic tumor detection

    Bridging Socially Enhanced Virtual Communities

    Get PDF

    Observation of direct and indirect magnetoelectricity in lead free ferroelectric (Na 0.5Bi 0.5TiO 3)-magnetostrictive (CoFe 2O 4) particulate composite

    Get PDF
    A particulate composite consisting of 65 mol. % Na 0.5Bi 0.5TiO 3 and 35 mol. % CoFe 2O 4 was synthesized, and it's structure, microstructure, ferroelectric, magnetostrictive, magnetic, and direct/indirect magnetoelectric properties were studied. The composite showed different magnetization behaviour under electrically poled and un-poled conditions. The percentage change in magnetization as a result of poling is approximately -15% at 500 Oe magnetic field. Magnetostriction measurements displayed a value of λ 11 = -57 × 10 -6 and piezomagnetic coefficient δλ 11/δH = 0.022 × 10 -6 kOe -1 at 2.2 kOe for the composite. The maximum magnetoelectric output varied from 1350 mV/cm to 2000 mV/cm with change in the electrical poling condition

    2-(2,6-Dimethoxy­phen­yl)-5-hydr­oxy-7-meth­oxy-4H-1-benzopyran-4-one

    Get PDF
    In the title compound, C18H16O6, the dimethoxy­phenyl ring is rotated by 61.8 (1)° from the plane of the benzopyran system. The mol­ecule is stabilized by an intra­molecular O—H⋯O hydrogen bond

    Cyclodextrin Complexes of Reduced Bromonoscapine in Guar Gum Microspheres Enhance Colonic Drug Delivery

    Get PDF
    Here, we report improved solubility and enhanced colonic delivery of reduced bromonoscapine (Red-Br-Nos), a cyclic ether brominated analogue of noscapine, upon encapsulation of its cyclodextrin (CD) complexes in bioresponsive guar gum microspheres (GGM). Phase−solubility analysis suggested that Red-Br-Nos complexed with β-CD and methyl-β-CD in a 1:1 stoichiometry, with a stability constant (Kc) of 2.29 × 103 M−1 and 4.27 × 103 M−1. Fourier transforms infrared spectroscopy indicated entrance of an O−CH2 or OCH3−C6H4−OCH3 moiety of Red-Br-Nos in the β-CD or methyl-β- CD cavity. Furthermore, the cage complex of Red-Br-Nos with β-CD and methyl-β-CD was validated by several spectral techniques. Rotating frame Overhauser enhancement spectroscopy revealed that the Ha proton of the OCH3−C6H4−OCH3 moiety was closer to the H5 proton of β-CD and the H3 proton of the methyl-β-CD cavity. The solubility of Red-Br-Nos in phosphate buffer saline (PBS, pH ∼ 7.4) was improved by ∼10.7-fold and ∼21.2-fold when mixed with β-CD and methyl-β-CD, respectively. This increase in solubility led to a favorable decline in the IC50 by ∼2-fold and ∼3-fold for Red-Br-Nos−β-CD-GGM and Red-Br-Nos−methyl-β-CD-GGM formulations respectively, compared to free Red-Br-Nos−β-CD and Red-Br-Nos−methyl-β-CD in human colon HT-29 cells. GGM-bearing drug complex formulations were found to be highly cytotoxic to the HT-29 cell line and further effective with simultaneous continuous release of Red-Br-Nos from microspheres. This is the first study to showing the preparation of drug-complex loaded GGMS for colon delivery of Red-Br-Nos that warrants preclinical assessment for the effective management of colon cancer
    corecore