10 research outputs found

    Rc-blast: towards a portable, cost-effective open source hardware implementation

    No full text
    Basic Local Alignment Search Tool (BLAST) is a standard computer application that molecular biologists use to search for sequence similarity in genomic databases. This report describes the implementation of an FPGAbased hardware implementation designed to accelerate the BLAST algorithm. FPGA-based custom computing machines, more widely known as Reconfigurable Computing, are supported by a number of vendors and the basic cost of FPGA hardware is dramatically decreasing. Hence, the main objective of this project is to explore the feasibility of using this new technology to realize a portable, Open Source FPGA-based accelerator for the BLAST Algorithm. The present design is targeted to an AceIIcard and the design is based on the latest version of BLAST available from NCBI. Since the entire application does not fit in hardware, a profile study was conducted that identifies the computationally intensive part of BLAST. An FPGA hardware component has been designed and implemented for this critical segment. The portability and cost-effectiveness of the design are discussed. 1

    Design and Implementation of Open Source FPGA-Based Accelerator for BLAST

    No full text

    Performance and Cost Analysis of the Supernova Factory on the Amazon AWS Cloud

    No full text
    Today, our picture of the Universe radically differs from that of just over a decade ago. We now know that the Universe is not only expanding as Hubble discovered in 1929, but that the rate of expansion is accelerating, propelled by mysterious new physics dubbed “Dark Energy”. This revolutionary discovery was made by comparing the brightness of nearby Type Ia supernovae (which exploded in the past billion years) to that of much more distant ones (from up to seven billion years ago). The reliability of this comparison hinges upon a very detailed understanding of the physics of the nearby events. To further this understanding, the Nearby Supernova Factory (SNfactory) relies upon a complex pipeline of serial processes that execute various image processing algorithms in parallel on ~10 TBs of data. This pipeline traditionally runs on a local cluster. Cloud computing [Above the clouds: a Berkeley view of cloud computing, Technical Report UCB/EECS-2009-28, University of California, 2009] offers many features that make it an attractive alternative. The ability to completely control the software environment in a cloud is appealing when dealing with a community developed science pipeline with many unique library and platform requirements. In this context we study the feasibility of porting the SNfactory pipeline to the Amazon Web Services environment. Specifically we: describe the tool set we developed to manage a virtual cluster on Amazon EC2, explore the various design options available for application data placement, and offer detailed performance results and lessons learned from each of the above design options

    Performance Analysis of High Performance Computing Applications on the Amazon Web Services Cloud.

    No full text
    Abstract-Cloud computing has seen tremendous growth, particularly for commercial web applications. The on-demand, pay-as-you-go model creates a flexible and cost-effective means to access compute resources. For these reasons, the scientific computing community has shown increasing interest in exploring cloud computing. However, the underlying implementation and performance of clouds are very different from those at traditional supercomputing centers. It is therefore critical to evaluate the performance of HPC applications in today's cloud environments to understand the tradeoffs inherent in migrating to the cloud. This work represents the most comprehensive evaluation to date comparing conventional HPC platforms to Amazon EC2, using real applications representative of the workload at a typical supercomputing center. Overall results indicate that EC2 is six times slower than a typical mid-range Linux cluster, and twenty times slower than a modern HPC system. The interconnect on the EC2 cloud platform severely limits performance and causes significant variability
    corecore