82 research outputs found

    Effect of psoralens and ultraviolet radiation on murine dendritic epidermal cells

    Get PDF
    AbstractMonofunctional psoralens produce less phototoxicity than bifunctional psoralens after ultraviolet A (UVA) irradiation. We investigated the effect of repetitive treatments with angelicin (isopsoralen), a monofunctional psoralen, plus UVA radiation (IPUVA) on the number and morphology of dendritic epidermal cells (dEC). This effect was compared with that of 8-methoxypsoralen plus UVA radiation (PUVA), UVA alone, and UVB radiation. C3H/HeN mice were treated topically with the drugs three times/wk for 4 consecutive wk; followed each time by 1 or 2.5 J/cm2 of UVA radiation. Other groups of mice were treated with the drugs alone, UVA alone, or 0.81 J/cm2 of UVB. Epidermal sheets were stained for ATPase, Ia, and Thy-1 markers. Mice treated with PUVA and UVB exhibited severe phototoxicity, whereas no overt phototoxicity was observed in mice treated with IPUVA, UVA alone, or the drugs alone. Early during the PUVA and UVA treatments the ATPase marker was lost from dEC, followed by loss of the Ia marker; the Ia marker was lost before the ATPase marker from dEC in animals treated with IPUVA. At the end of the treatment, however, nearly total depletion of ATPase+, Ia+, and Thy-1+ dEC was observed in mice treated with PUVA and IPUVA. UVB radiation caused rapid depletion of Thy-1+ dEC as well as ATPase+ and Ia+ cells. During treatments with IPUVA, PUVA, UVA, and UVB, the Langerhans cells became rounded and lost their dendrites. These changes were quantitated by image analysis. We conclude that alterations of cutaneous immune cells can occur in the absence of overt phototoxicity, and that monofunctional and bifunctional psoralens plus low dose of UVA radiation may have different effects on dEC markers

    Cd40–Cd40 Ligand Interactions in Vivo Regulate Migration of Antigen-Bearing Dendritic Cells from the Skin to Draining Lymph Nodes

    Get PDF
    Whereas CD40–CD40 ligand interactions are important for various dendritic cell (DC) functions in vitro, their in vivo relevance is unknown. We analyzed the DC status of CD40 ligand −/− mice using a contact hypersensitivity (CHS) model system that enables multiple functions of DCs to be assessed in vivo. Immunohistochemistry of skin sections revealed no differences in terms of numbers and morphology of dendritic epidermal Langerhans cells (LCs) in unsensitized CD40 ligand −/− mice as compared with wild-type C57BL/6 mice. However, after contact sensitization of CD40 ligand −/− mice, LCs failed to migrate out of the skin and substantially fewer DCs accumulated in draining lymph nodes (DLNs). Furthermore, very few antigen-bearing DCs could be detected in the paracortical region of lymph nodes draining sensitized skin. This defect in DC migration after hapten sensitization was associated with defective CHS responses and decreased cutaneous tumor necrosis factor (TNF)-α production and was corrected by injecting recombinant TNF-α or an agonistic anti-CD40 monoclonal antibody. Thus, CD40–CD40 ligand interactions in vivo regulate the migration of antigen-bearing DCs from the skin to DLNs via TNF-α production and play a vital role in the initiation of acquired T cell–mediated immunity

    Cells with UV-Specific DNA Damage Are Present in Murine Lymph Nodes After In Vivo UV Irradiation

    Get PDF
    Ultraviolet radiation is absorbed in the skin, especially in the epidermis. After ultraviolet irradiation the number of major histocompatibility complex class II+, adenosine triphosphatase+ Langerhans cells and Thy-1+ dendritic epidermal cells in the epidermis decreases. Whether this decrease is due to migration of these cells or to loss of membrane markers is not clear. To address this question we have used the monoclonal antibody H3 directed against cyclobutyl thymine dimers – a form of DNA damage that is specifically induced by ultraviolet radiation – to investigate whether H3+ cells are present in the draining lymph nodes of the skin after ultraviolet irradiation of hairless, inbred mice (HRA/Skh). After a single dose of ultraviolet radiation (Westinghouse FS40, 1.5 kJ/m2), H3+ cells were present in the paracortex of the draining lymph nodes. No positive cells were found in t:he blood of irradiated mice. These results suggest that the H3+ cell in the lymph nodes originate from the skin. The number H3+ cells in the draining lymph nodes increased the first 24 h after irradiation and then stabilized. Immunohistochemical double staining revealed that all H3+ cells were major histocompatibility complex II+, and that only a fraction of the cells were NLDC-145 positive. No Vγ3-cell receptor bearing cells could be found in the lymph nodes after UV irradiation of the skin

    In Support of a Patient-Driven Initiative and Petition to Lower the High Price of Cancer Drugs

    Get PDF
    Comment in Lowering the High Cost of Cancer Drugs--III. [Mayo Clin Proc. 2016] Lowering the High Cost of Cancer Drugs--I. [Mayo Clin Proc. 2016] Lowering the High Cost of Cancer Drugs--IV. [Mayo Clin Proc. 2016] In Reply--Lowering the High Cost of Cancer Drugs. [Mayo Clin Proc. 2016] US oncologists call for government regulation to curb drug price rises. [BMJ. 2015

    Margaret L. Kripke, PhD

    Get PDF
    https://openworks.mdanderson.org/legendsandlegacieschapters/1011/thumbnail.jp
    corecore