6 research outputs found

    Investigation of two-frequency Paul traps for antihydrogen production

    Full text link
    Radio-frequency (rf) Paul traps operated with multifrequency rf trapping potentials provide the ability to independently confine charged particle species with widely different charge-to-mass ratios. In particular, these traps may find use in the field of antihydrogen recombination, allowing antiproton and positron clouds to be trapped and confined in the same volume without the use of large superconducting magnets. We explore the stability regions of two-frequency Paul traps and perform numerical simulations of small, multispecies charged-particle mixtures that indicate the promise of these traps for antihydrogen recombination.Comment: 11 pages, 10 figure

    Coherent Control of the Rotational Degree of Freedom of a Two-Ion Coulomb Crystal

    No full text
    We demonstrate the preparation and coherent control of the angular momentum state of a two-ion crystal. The ions are prepared with an average angular momentum of 77807780\hbar freely rotating at 100~kHz in a circularly symmetric potential, allowing us to address rotational sidebands. By coherently exciting these motional sidebands, we create superpositions of states separated by up to four angular momentum quanta. Ramsey experiments show the expected dephasing of the superposition which is dependent on the number of quanta separating the states. These results demonstrate coherent control of a collective motional state described as a quantum rotor in trapped ions. Moreover, our work offers an expansion of the utility of trapped ions for quantum simulation, interferometry, and sensing

    Literaturliste

    No full text
    corecore