105 research outputs found

    Ecological aspect of children's anthropometric investigation

    Get PDF
    The aim of work is to study the main indexes of physical development of children in the age from 3 to 10, living in districts of Belgorod region (Russia) with different levels of ecological pollutio

    Doping the holographic Mott insulator

    Full text link
    Mott insulators form because of strong electron repulsions, being at the heart of strongly correlated electron physics. Conventionally these are understood as classical "traffic jams" of electrons described by a short-ranged entangled product ground state. Exploiting the holographic duality, which maps the physics of densely entangled matter onto gravitational black hole physics, we show how Mott-insulators can be constructed departing from entangled non-Fermi liquid metallic states, such as the strange metals found in cuprate superconductors. These "entangled Mott insulators" have traits in common with the "classical" Mott insulators, such as the formation of Mott gap in the optical conductivity, super-exchange-like interactions, and form "stripes" when doped. They also exhibit new properties: the ordering wave vectors are detached from the number of electrons in the unit cell, and the DC resistivity diverges algebraically instead of exponentially as function of temperature. These results may shed light on the mysterious ordering phenomena observed in underdoped cuprates.Comment: 27 pages, 9 figures. Accepted in Nature Physic

    Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to develop a ligand-targeted photodynamic therapy (tPDT) by conjugating factor VII (fVII) protein with photosensitiser verteporfin in order to overcome the poor selectivity and enhance the effect of non-targeted PDT (ntPDT) for cancer. fVII is a natural ligand for receptor tissue factor (TF) with high affinity and specificity. The reason for targeting receptor TF for the development of tPDT is that TF is a common but specific target on angiogenic tumour vascular endothelial cells (VEC) and many types of tumour cells, including solid tumours and leukaemia.</p> <p>Methods</p> <p>Murine factor VII protein (mfVII) containing a mutation (Lys341Ala) was covalently conjugated via a cross linker EDC with Veterporfin (VP) that was extracted from liposomal Visudyne, and then free VP was separated by Sephadex G50 spin columns. fVII-tPDT using mfVII-VP conjugate, compared to ntPDT, was tested <it>in vitro </it>for the killing of breast cancer cells and VEGF-stimulated VEC and <it>in vivo </it>for inhibiting the tumour growth of breast tumours in a mouse xenograft model.</p> <p>Results</p> <p>We showed that: (i) fVII protein could be conjugated with VP without affecting its binding activity; (ii) fVII-tPDT could selectively kill TF-expressing breast cancer cells and VEGF-stimulated angiogenic HUVECs but had no side effects on non-TF expressing unstimulated HUVEC, CHO-K1 and 293 cells; (iii) fVII targeting enhanced the effect of VP PDT by three to four fold; (iii) fVII-tPDT induced significantly stronger levels of apoptosis and necrosis than ntPDT; and (iv) fVII-tPDT had a significantly stronger effect on inhibiting breast tumour growth in mice than ntPDT.</p> <p>Conclusions</p> <p>We conclude that the fVII-targeted VP PDT that we report here is a novel and effective therapeutic with improved selectivity for the treatment of breast cancer. Since TF is expressed on many types of cancer cells including leukaemic cells and selectively on angiogenic tumour VECs, fVII-tPDT could have broad therapeutic applications for other solid cancers and leukaemia.</p

    Implantation Serine Proteinase 1 Exhibits Mixed Substrate Specificity that Silences Signaling via Proteinase-Activated Receptors

    Get PDF
    Implantation S1 family serine proteinases (ISPs) are tryptases involved in embryo hatching and uterine implantation in the mouse. The two different ISP proteins (ISP1 and ISP2) have been detected in both pre- and post-implantation embryo tissue. To date, native ISP obtained from uterus and blastocyst tissues has been isolated only as an active hetero-dimer that exhibits trypsin-like substrate specificity. We hypothesised that in isolation, ISP1 might have a unique substrate specificity that could relate to its role when expressed alone in individual tissues. Thus, we isolated recombinant ISP1 expressed in Pichia pastoris and evaluated its substrate specificity. Using several chromogenic substrates and serine proteinase inhibitors, we demonstrate that ISP1 exhibits trypsin-like substrate specificity, having a preference for lysine over arginine at the P1 position. Phage display peptide mimetics revealed an expanded but mixed substrate specificity of ISP1, including chymotryptic and elastase activity. Based upon targets observed using phage display, we hypothesised that ISP1 might signal to cells by cleaving and activating proteinase-activated receptors (PARs) and therefore assessed PARs 1, 2 and 4 as potential ISP1 targets. We observed that ISP1 silenced enzyme-triggered PAR signaling by receptor-disarming. This PAR-disarming action of ISP1 may be important for embryo development and implantation

    Natural killer cells are crucial for the efficacy of Icon (factor VII/human IgG1 Fc) immunotherapy in human tongue cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Icon is a novel, dual neovascular- and cancer cell-targeting immunotherapeutic agent and has shown efficacy in the treatment of cancer, wet form macular degeneration and endometriosis. However, its underlying mechanism remains to be investigated. The objective of this study is to elucidate the mechanism of Icon immunotherapy in cancer using a squamous carcinoma human tongue cancer line TCA8113 <it>in vitro </it>and <it>in vivo </it>in severe combined immunodeficiency (SCID) mice.</p> <p>Results</p> <p>We showed that Icon, as a chimeric factor VII and human IgG1 Fc immunoconjugate, could separately induce murine natural killer (NK) cells and activate complement to kill TCA8113 cancer cells <it>in vitro </it>via antibody dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, Icon-NK ADCC had a significantly stronger effect than that of Icon-CDC. Moreover, Icon could completely eradicate established human tongue tumour xenografts <it>in vivo </it>in the CB-17 strain of SCID mice that have functional NK cells at a normal level, whereas it was less effective in SCID/Beige mice that do not have functional NK cells.</p> <p>Conclusions</p> <p>We conclude that NK cells are crucial for the efficacy of Icon immunotherapy in the treatment of cancer. The results also suggest that impaired NK level/activity could contribute to the resistance to therapeutic antibodies that are currently under investigation in preclinical and clinical studies.</p

    Inhibiting mevalonate pathway enzymes increases stromal cell resilience to a cholesterol-dependent cytolysin

    Get PDF
    Animal health depends on the ability of immune cells to kill invading pathogens, and on the resilience of tissues to tolerate the presence of pathogens. Trueperella pyogenes causes tissue pathology in many mammals by secreting a cholesterol-dependent cytolysin, pyolysin (PLO), which targets stromal cells. Cellular cholesterol is derived from squalene, which is synthesized via the mevalonate pathway enzymes, including HMGCR, FDPS and FDFT1. The present study tested the hypothesis that inhibiting enzymes in the mevalonate pathway to reduce cellular cholesterol increases the resilience of stromal cells to PLO. We first verified that depleting cellular cholesterol with methyl-β-cyclodextrin increased the resilience of stromal cells to PLO. We then used siRNA to deplete mevalonate pathway enzyme gene expression, and used pharmaceutical inhibitors, atorvastatin, alendronate or zaragozic acid to inhibit the activity of HMGCR, FDPS and FDFT1, respectively. These approaches successfully reduced cellular cholesterol abundance, but mevalonate pathway enzymes did not affect cellular resilience equally. Inhibiting FDFT1 was most effective, with zaragozic acid reducing the impact of PLO on cell viability. The present study provides evidence that inhibiting FDFT1 increases stromal cell resilience to a cholesterol-dependent cytolysin

    Characterization of toxigenic Corynebacterium diphtheriae strains isolated in Russia

    Get PDF
    The aim of the study was to characterize toxigenic strains of Corynebacterium diphtheriae by examining 12 toxigenic strains of C. diphtheriae isolated in Russia between January, 2017 to June, 2019. The morphological, toxigenic and biochemical properties of C. diphtheriae was studied. Genotyping of C. diphtheriae strains was performed using MLST and dtxR gene sequencing with subsequent phylogenetic analysis. Results. Toxigenic strains of C. diphtheriae were isolated in the Novosibirsk, Samara and Chelyabinsk Regions, the Khanty-Mansi Autonomous Okrug — Yugra as well as the Republic of Northern Ossetia — Alania. Among these strains, 5 were isolated from diphtheria patients (moderate disease found in one case, mild course — remaining patients) and 7 strains were isolated from bacterial carriers. In two cases C. diphtheriae from diphtheria patients were identified as ST25 sequence type, gravis variant; in one case — ST8 type, gravis variant; two cases — ST67 sequence type, mitis variant. In asymptomatic carriers of tox-positive C. diphtheriae strains they belonged to ST25 sequence type, gravis variant — in two cases, ST67 type, mitis variant — in four cases. A sequencing type was not identified in one case. All sequence types were widespread globally being presented by a large number of isolates in the PubMLST and characterized by a substantial amount of derivative sequence types. At the same time, they belonged to different clonal complexes and differed markedly from each other contributing to their reliable difference as assessed by MLST. Study of gene dtxR sequence diversity showed that all allelic variants were typical for the representatives of these sequence types. New alleles of gene dtxR were not revealed in strains examined. It was shown that non-synonymous substitution C440T leading to A147V amino acid substitution was found solely in one allele distributed in ST8, ST185, ST195 and ST451 types suggesting at late mutation. In contrast, the polymorphism C640A resulting in the amino acid substitution L214I was found not only in the same allele, but also in the basal tree branches indicating that isoleucine was in the ancestral sequence of the protein
    corecore