25 research outputs found

    Recyclability of 304L Stainless Steel in the Selective Laser Melting Process

    Get PDF
    During part fabrication by selective laser melting (SLM), a powder-bed fusion process in Additive Manufacturing (AM), a large amount of energy is input from the laser into the melt pool, causing generation of spatter and condensate, both of which have the potential to settle in the surrounding powder-bed compromising its reusability. In this study, 304L stainless steel powder is subjected to five reuses in the SLM process to assess its recyclability through characterization of both powder and mechanical properties. Powder was characterized morphologically by particle size distribution measurements, oxygen content with inert gas fusion analysis, and phase identification by X-ray diffraction. The evolution of powder properties with reuse was also correlated to tensile properties of the as-built material. The results show that reused powder coarsens and accrues more oxygen with each reuse. The effects of powder coarsening and oxygen increase on the tensile properties of fabricated parts are being investigated

    Mechanical behavior of fetal dura mater under largeaxisymmetric inflation

    Get PDF
    The nonlinear mechanical behavior of fetal dura mater was tested experimentally and compared to two published nonlinear material strain energy functions, the Mooney-Rivlin and the Skalak, Tozeren, Zarda, and Chien (STZC

    Uterine work in parturition

    No full text

    A network approach to vibration analysis : final report

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/6071/5/bac5812.0001.001.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/6071/4/bac5812.0001.001.tx

    Characterization of Heat-Affected Powder Generated during Selective Laser Melting of 304L Stainless Steel Powder

    Get PDF
    The selective laser melting (SLM) process is an Additive Manufacturing (AM) technique that uses a laser to fuse successive layers of powder into near fully dense components. Due to the large energy input from the laser during processing, vaporization and instabilities in the melt pool occur causing the formation of condensate and laser spatter, collectively known as heat-affected powder. Since heat-affected powder settles into the powder bed, the properties of the unconsolidated powder may be altered compromising its reusability. In this study, characterization of 304L heat-affected powder was performed through particle size distribution measurements, x-ray diffraction, metallography, energy-dispersive spectroscopy mapping, and visualization of grain structure with the aid of a focused-ion beam. The results show morphological, microstructural, and surface chemistry differences between the starting powder and heat-affected powder formed during processing which aid in the understanding of laser spatter and condensate that form in the SLM process

    Powders for Additive Manufacturing Processes: Characterization Techniques and Effects on Part Properties

    Get PDF
    Powder-bed based Additive Manufacturing is a class of Additive Manufacturing (AM) processes that bond successive layers of powder by laser melting to facilitate the creation of parts with complex geometries. As AM technology transitions from the fabrication of prototypes to end-use parts, the understanding of the powder properties needed to reliably produce parts of acceptable quality becomes critical. Consequently, this has led to the use of powder characterization techniques such as scanning electron microscopy (SEM), laser light diffraction, x-ray photoelectron spectroscopy (XPS), and differential thermal analysis (DTA) to both qualitatively and quantitatively study the effect of powder characteristics on part properties. Utilization of these powder characterization methods to study particle size and morphology, chemical composition, and microstructure of powder has resulted in significant strides being made towards the optimization of powder properties for powder-bed based AM processes. This paper reviews methods commonly used in characterizing metallic AM powders, and the effects of powder characteristics on the part properties in these AM processes

    Powder Characterization Techniques and Effects of Powder Characteristics on Part Properties in Powder-Bed based Additive Manufacturing: A Review

    No full text
    Powder-bed fusion is a class of Additive Manufacturing (AM) processes that bond successive layers of powder to facilitate the creation of parts with complex geometries. As AM technology transitions from the fabrication of prototypes to end-use parts, the understanding of the powder properties needed to reliably produce parts of acceptable quality becomes critical. Consequently, this has led to the use of powder characterisation techniques such as scanning electron microscopy, laser light diffraction, X-ray photoelectron spectroscopy, and differential thermal analysis to study the effect of powder characteristics on part properties. Utilisation of these powder characterisation methods to study particle morphology, chemistry, and microstructure has resulted in significant strides being made towards the optimisation of powder properties. This paper reviews methods commonly used in characterising AM powders, and the effects of powder characteristics on the part properties in powder-bed fusion processes

    Characterization of Heat-Affected Powder Generated During the Selective Laser Melting of 304L Stainless Steel Powder

    No full text
    The selective laser melting (SLM) process is an Additive Manufacturing (AM) technique that uses a laser to fuse successive layers of powder into near fully dense components. Due to the large energy input from the laser during processing, vaporization and instabilities in the melt pool occur causing the formation of condensate and laser spatter, collectively known as heat-affected powder. Since heat-affected powder settles into the powder bed, the properties of the unconsolidated powder may be altered compromising its reusability. In this study, characterization of 304L heat-affected powder was performed through particle size distribution measurements, x-ray diffraction, metallography, energy-dispersive spectroscopy mapping, and visualization of grain structure with the aid of a focused-ion beam. The results show morphological, microstructural, and surface chemistry differences between the starting powder and heat-affected powder formed during processing which aid in the understanding of laser spatter and condensate that form in the SLM process.Mechanical Engineerin

    Characterization of Laser Spatter and Condensate Generated during the Selective Laser Melting of 304L Stainless Steel Powder

    No full text
    The selective laser melting process, commonly referred to as laser powder-bed fusion (L-PBF), is an Additive Manufacturing (AM) technique that uses a laser to fuse successive layers of powder into near fully dense components. Due to the large energy input from the laser during processing, vaporization causes instabilities in the melt pool leading to the formation of laser spatter and condensate, collectively known as heat-affected powder. Since heat-affected powder settles into the powder bed, the properties of the unconsolidated powder may be altered compromising its reusability. In this study, characterization of 304 L heat-affected powder was performed through particle size and shape distribution measurements, energy-dispersive spectroscopy, Raman spectroscopy, inert gas fusion, metallography, and x-ray diffraction. The results show morphological, chemical, and microstructural differences between the virgin powder and heat-affected powder formed during processing which aid in the understanding of laser spatter and condensate that form in the L-PBF process
    corecore