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Mechanical Behavior of Fetal Dura 
Mater Under Large Axisymmetric 
Inflation 
The nonlinear mechanical behavior of fetal dura mater was tested experimentally 
and compared to two published nonlinear material strain energy functions, the 
Mooney-Rivlin and the Skalak, Tozeren, Zarda, and Chien (STZC). The STZC 
constitutive relations best fit the behavior of the dura mater and were used to 
describe quantitatively its stiffness. Runge-Kutta numerical procedures were used to 
fit the theoretical data to the experimental results. The material's stiffness was 
positively correlated with fetal weight (r = 0.67, p<0.05). These results are 
discussed and directions for future research indicated. 

Introduction 

Many events surrounding the birth process continue to be 
enigmas even in our space-age society. Although the death 
rate associated with the birth process in the U.S. is relatively 
low (1-3 per 1000 live births), half are unexplained [1]. The 
State Assembly on Developmental Disabilities of California 
estimated 30,000 to 44,000 mentally retarded individuals are 
added to our population annually, nearly half severely [2]. 
Besides the human tragedy mental and physical handicaps 
represent, Quilligan and Paul estimate supportive care costs 4 
billion dollars annually [3]. They postulate that with more 
knowledge of labor and delivery, decreasing the number of 
cases of mental and physical handicaps by 50 percent is 
possible. 

For example, a better understanding of fetal skull molding 
is needed. Unlike the rigid adult skull, fetal skull bones are 
flexible plates connected at their margins by soft tissue. The 
bones translate and flex under the forces of labor so the head 
can pass through the cervix and maternal pelvis. The extent of 
the bones' movements are limited, in part, by the soft tissue 
complex of the dura mater, falx cerebri and tentorium 
cerebelli. These are all tough, fibrous membranes surrounding 
the brain and attached to the inner aspects of the skull bones 
and its base. 
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Undefined limits exist to this molding process. In the case 
of cephalopelvic disproportion, the head is too large to safely 
pass through the maternal pelvis. The aforementioned 
mortality and morbidity statistics imply that a grey area exists 
in which frank disproportion may not be evident. If left to 
deliver vaginally, the head will pass through the canal, but 
molding will be severe enough to cause death or neurological 
deficits, a condition that cannot be accurately diagnosed 
today. The purpose of this research is to characterize the 
mechanical behavior of fetal dura mater, a nonlinear 
viscoelastic membrane, so that safe limits to skull molding 
may be better defined. 

Background 

The fibrous nature of soft biological tissues results in 
nonlinear stress-strain characteristics [4]. Adult dura is 
anisotropic [5]; fetal dura is assumed to be similar. Also, dura 
is viscoelastic. However, anisotropy and viscoelasticity can be 
ignored in any gross modeling effort. The general variability 
in adult tissue tends to overshadow the effects of fiber 
orientation [5]. Since birth is relatively slow or quasi-static, 
viscoelastic characteristics can be considered of second-order 
importance. Thus, in our mathematical model the dura is 
assumed to be incompressible, homogeneous, isotropic and 
nonlinearly elastic. 

Skull molding is a large deformation process. Borell and 
Fernstrom found through intrapartum radiographs that the 
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Table 1 Biographical data for the test material used in this investigation 

Calvariumno. 

14-parietal left 
14-parietal right 
15-parietal right 
16-parietal right 
17-parietal right 
18-parietal right 
19-parietal left 
20 - parietal left 
21 - parietal left 

gestational age (wk) 

30 
30 
42 
39 
30 
40 
40 
33 
30 

Sex 

F 
F 
F 
M 
M 
M 
M 
F 

Weight(g) 

1491 
1491 
2850 
2922 
987 

3612 
2550 
1783 
1400 

Nominal Thickness 

0.70 
0.52 
0.51 
0.75 
0.55 
0.54 
0.44 
0.52 
0.39 

(mm) temperature ("CT 

- 1 0 
- 1 0 
- 1 0 
- 1 0 
- 1 0 
- 1 0 
- 1 0 

5 
5 

Cause of death 

Sepsis and RDS 
Sepsis and RDS 
Hypoplastic left heart 
Aortic atresia 
Cystadenomtoid malformation lung 
Diaphragmatic hernia 
Trisomy 21 (G-G) 
Respiratory distress syndrome 
Respiratory distress syndrome 

SPECIMEN 

'0' RING 

Fig. 1 The membrane is clamped into the fixture shown in the figure 
for the inflation test. Knurled rubber is glued to the underside of the top 
ring to keep the membrane from slipping during inflation. 

biparietal diameter can increase in some cases as much as 10 
mm, more than a 10 percent change [6]. Therefore, modeling 
must include geometric nonlinearities. 

The theory of nonlinearly elastic membranes undergoing 
large deformations is described by Green and Adkins [7], 
Feng and Yang [8], Yang and Feng [9], Benedict, et al. [10], 
and Bogen and McMahon [11]. 

Procedure 

Dura mater was excised from calvaria of fetuses that died 
from causes that would not appreciably affect the develop
ment of the dura. The estimated gestational ages ranged from 
30 to 42 wk; fetal masses ranged from 987 to 3612 g. Table 1 
lists data regarding the fetuses and their dura. 

After excision, the dura was immediately stored in 0.9 N 
saline solution. Some specimens were acquired prior to test 
development, and so were frozen. The others were 
refrigerated at 5°C until testing could be performed. 

Circular specimens 60 mm in diameter were cut from the 
dura sheets. A specimen was mounted in an aluminum clamp 
with inner and outer diameters of 36 mm and 71 mm (Fig. 1). 
To secure the dura, the top portion of the clamp has a ring of 
hard knurled rubber on its underside. In addition, the bottom 
portion has two grooves: the inner groove contains an O-
ring, and the edge of the membrane is secured in the outer 
groove when the fixture is assembled. Thirteen symmetric 
holes in the base of the fixture provide air flow for inflation. 

Two aluminum front surface mirrors, directly opposed, 
were oriented 30 deg from the vertical (Fig. 2). A motor-
driven 3 5-mm single-lens reflex camera was mounted above 

Fig. 2 A schematic representation of the experimental apparatus is 
shown 
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Fig. 3 Two samples from the same sheet of styrene - butadiene, a 
nonlinear rubber, were tested for experimental reproducibility pur
poses. The measured responses were within the expected variations in 
material behavior. The solid dots represent the first test and the open 
circles the second test. 

the fixture. The event of a photograph was marked via the 
shutter release, which was connected through a relay to one 
channel of a Brush strip-chart recorder. Inflation pressure, 
measured with a National Semiconductor LX 1730GB 
pressure transducer, was recorded on the second channel. Y-
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configuration tubing connected the inflation fixture, pressure 
transducer, and air supply. 

Just prior to testing, the dura specimen was allowed to 
warm to room temperature (23 °C). Its thickness was 
measured with a dial indicator in at least four randomly 
selected locations. The measurements were taken upon initial 
contact with the membrane, before tissue compression oc
curred. The dura was kept moist with saline solution at all 
times. 

A latex sheet 0.094 mm thick was glued to the O-ring with 
cyanoacrylate adhesive. The dura was then glued at its 
perimeter to the latex sheet to prevent air from permeating the 
porous dura. 

A circumferential grid pattern was applied to the dura with 
a rubber stamp and water-insoluble drawing ink (Fig. 1). The 
stamp was aligned with marks on the fixture which, together 
with a calibration hemisphere, allowed for the three-
dimensional grid point reconstruction from the photographs. 

Two zero pressure reference frames were photographed 
after the calibration shots. The pressure was increased in 
slow, discrete, roughly equal increments. At each increment a 
photograph was taken after membrane motion stopped. This 
procedure was repeated until the dura ruptured, usually 
between 200 to 300 KPa (30 to 40 psi). The average inflation 
rate was less than 7 KPa/s (1 psi/s). About fifteen 
photographs were taken per test. 

After the test the grid points were digitized. The three-
dimensional coordinates were then reconstructed by a 
technique called Direct Linear Transformation [12]. 

Two tests were performed to check the reproducibility of 
the experimental results. Styrene-butadiene rubber was 
chosen because it had been the subject of a similar study by 
Wineman [13]. Figure 3 demonstrates that two separate sheets 
from the same stock of material generated virtually identical 
load-deflection curves. Therefore, any differences we found 
in the biological material would likely be inherent in the 
material, not in the test protocol. 

To determine if the latex sheet affected the dura loading 
deflection curve, we studied the latex sheet without dura. The 
latex expanded to an apex deflection of 2.5 cm by applying 
only 3.5 KPa (0.5 psi). Thus, the compliance of the latex is 
significantly greater than that of the dura and did not affect 
the results. 

Analysis 

Membrane inflation tests have been performed on both 
nonbiological materials [13] and biological materials [14, 15]. 
The geometry of a membrane in its initial and deformed 
configurations is shown in Fig. 4. The loading and geometry 
are axisymmetric. The point Q defined by the coordinates (r, 
z) in the initial configuration is displaced to the point Q' 
defined by (p, £) in the deformed configuration. The principal 
directions of the stresses and stretch ratios at each point on 
the membrane reference surface are in the meridional, cir
cumferential, and normal directions. The stretch ratios in the 
meridional and circumferential directions will be denoted by 
Xj, and X2, respectively. By definition they are 

V 
dS 
Is 

X,= 

(1) 

(2) 

where dS and ds are the meridional arc lengths in the 
deformed and undeformed configurations. 

From incompressibility, the stretch ratio in the normal 
direction, X3, can be obtained from the relation 

X,X2X3 = 1 (3) 

Deformed 
configuration 

Initial 
configuration 

Fig. 4 Stretch ratios, X, are defined by comparing the axisymmetric 
membrane in its initial and deformed configurations as point Q moves 
to Q'. 7-,and T2 are the membrane forces in the aeridional and cir
cumferential directions, respectively. The points Q and Q' are defined 
by their coordinates r, z, 0 and p,(,6. 

Deformed Configuration 

Initial Configuration 

Fig. 5 In order that the numerical procedures could satisfactorily 
account for the behavior of the membrane, an initial apex deflection, a, 
had to be specified for p = 0 + where p is the pressure. The radius of the 
membrane at the equator is b. 

The initial experimental configuration of the dura was 
meant to be flat. However, when this supposedly flat 
membrane was subjected to a negligibly small pressure, a 
sudden small deformation took place. This is due to the fact 
that the slope of the stress-strain relation of soft biological 
tissues at small strain remains very small [16]. Moreover, 
measuring the length at rest of a strip of soft tissue is always 
very difficult. For this reason, the initial reference con
figuration of the dura is represented as a shallow spherical cap 
as shown in Fig. 5. The equation of this reference con
figuration is 

z = a(\-r2/b2) (4) 
As shown in Fig. 5, a is the initial height and b is the radius of 
the membrane. The problem is to determine the deformed 
configuration when the initial configuration and the uniform 
pressure are given. A similar problem has been solved by 
Pujara and Lardner [17]. 

Consider an element cut from the membrane of revolution 
of Fig. 4 in the deformed configuration. The force balance 
equations in the principal directions are as follows: 
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dJi+L(Tl_T2)=0 
dp p 

(5) 

(6) 

STYRENE-BUTADIENE 

K1Ti+K2T2=p. 

Here, Tx and T2 are the membrane forces in the principal 
directions, Kx and #2 are the principal curvatures, andjp is the 
uniform pressure in the normal direction acting on the 
deformed membrane. Writing the principal curvatures Ki and 
K2 in terms of the principal stretch ratios X[ and X2, sub
stituting them in equations (5), (6), and transforming the 
resulting equations to the initial configuration, we obtain the 
following equilibrium equations: 

r\: 
(T{-T2), 

in which 

Wv-'hv') + /•X,X; 
• i v - vzV'=P, 

(7) 

(8) 

and 

where 

< » - v - -
\i=\i[l+(z')2]y'=XiQ. 

Q=[l+(z')2]'A (9) 

To the equilibrium equations (7) and (8), a compatibility 
condition must be added 

X2' = -(ri-\2). (10) 

In their most general forms, the constitutive equations will 
be assumed to express the membrane forces T\ and T2 in 
terms of the principal stretch ratios X) and X2, as follows 

Tl=F(Xu\2), T2 = G(\i,X2). (11) 

Substituting equation (11) into the equilibrium equations 
(7), (8), we obtain 

V = 
fi 

dF/d\ ; [ -
X , ( F - G ) dF 

r\2 A 9X2 

dF X,fi' 

\ rA r ) 

ax, n2 ]• 
A' = ^ L ( A 2 _ 1 ) + | X J A [ A 2 - 1 ] * 

rFX2 F 

(12) 

(13) 

in which A = \/r). The compatibility condition (10) can be 
written as 

X, ' = 
rA 

(14) 

The three equations (12)-(14) are sufficient to determine the 
three unknowns X,, X2 and A for a given pressure/?. 

By a discussion similar to that in Green and Adkins [7] and 
Wineman[13],atr = 0 

X( = X, =X2 = r/ = Xo,A=l, 

Xj' = X, ' = X2' = ??'= A ' = 0 , (15) 

where X0, the stretch ratio at the apex, is assumed to be known 
in the numerical procedure used in the solution. The boundary 
condition at r=b is X2 = 1. 

In studies related to elasticity of bodies capable of finite 
deformation, an approach commonly used is to postulate the 
form of an elastic potential, or strain energy function [7]. A 
discussion of various functions can be found in Crisp [18] and 
Fung [4]. The constitutive equations selected for the present 
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Fig. 6(a) The behavior of the Mooney-Rivlin material model was 
clearly adequate for characterizing the behavior of styrene-butadiene 
rubber; but (b) the STZC model was superior to the Mooney-Rivlin 
model in characterizing fetal dural mater where the latter diverged from 
the experimental response under large deflections. The dots represent 
the experimental values, the triangles are from the Mooney-Rivlin 
model and the open circles are from the STZC model. 

study are the Mooney-Rivlin material model [7] and the 
Skalak, Tozeren, Zarda and Chien [19] material model. 

For the Mooney-Rivlin model, the constitutive relations are 

T, = -
2hCx 

X[X2 
-(X,2-VX2

2)(l+aV), (16) 
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Fig. 7 A composite of several of the experimental and theoretical 
load-deflection curves is shown. The dots represent experimental 
values while the open circles are from the STZC model. Best results 
were obtained in all cases for r = 0.25. The material stiffness factor, C, 
for each inset is: (a) 2700g/cm, (b) 3900g/cm, (c) 2700g/cm, (d) 5400 
g/cm, (e) 3000g/cm, and (f) 3600g/cm. 

2hC 

^ = ^yMA^ - W ) ( l + a\,2), (17) 

in which h is the initial, uniform thickness of the membrane, 
a = C2/Cx, and Ci and C2 are the material constants with the 
dimensions of stress. For the STZC model, the constitutive 
relations are 

CX 
ri = l x T [ r ( X | 2 ~ 1 ) + X22(Xl2X22"1)]' 

CX 
MIXX^-D + X . W V - I ) ] , 2X, 

(18) 

(19) 

Table 2 The numerically determined values of the 
dependent variables for the STZC model are listed 

m-

Specimen C(g/cm) 
14-
14-
15-
16-
17-
18-
19-
20-
21-
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MASS (Kg) 
Fig. 8 A positive correlation existed between the material stiffness 
factor, C, and fetal development (r = 0.67, p < 0.05) 

in which T = B/C, and B and C are the material constants with 
the dimensions of force per unit length. Equations (12)-(14) 
can be solved with the Runge-Kutta method [20]. The 
numerical integration starts at r=0, and the generator of the 
membrane is divided into twenty equal meshes. The solution 
is completed under the requirement that the radius of the 
deformed membrane at the last mesh point must be equal to 
the initial outer radius which is actually the boundary con
ditions at that point. 

Results 

Figure 6 compares the experimental results with the 
response of the Mooney-Rivlin material model and the STZC 
material model. Figure 6(a) demonstrates that the Mooney-
Rivlin model descibes well the behavior of the styrene-
butadiene rubber (a = 0.25, C = 0.5 MPa). However, in the 
case of dura, Fig. 6(Z>) demonstrates that the behavior of the 
STZC model describes the biological material better than does 
the Mooney-Rivlin model, the latter of which diverges from 
the membrane's response for large apex deflections. The 
independent variables providing the best fit of the respective 
models are given in the figures. It is clear that the STZC 
model will consistently give a better fit to the experimental 
data. 

Figure 7 presents the responses of the membranes measured 
not shown in other figures. Table 2 lists the computed values 
of the independent variables of the STZC model for all the 
tests. 

For a standard set of initial conditions, the computed 
values of C were plotted against birth weight (Fig. 8). The 
correlation was statistically significant (r = 0.67, p < 0.05). 
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Comments References 

The limited availability of fetal dura mater precluded in
vestigation of storage effects during this study; however, the 
two unfrozen specimens, tested within days of excision, 
exhibit loading curves within the scatter of the curves from the 
frozen specimens as can be seen in Fig. 7. 

The STZC strain energy function requires two constants to 
specify the nonlinear behavior of one curve out of a family of 
curves. When varying one of constants, T, from 0.10 to 0.40, 
the STZC response changes only slightly. (The possible values 
for T are between zero and one.) Setting r = 0.25 for all tests 
consistently gave the best results. 

The numerical procedure requires the specification of an 
initial apex deflection and a membrane thickness. The range 
of measured thicknesses from all specimens yielded the same 
numerical results, so the average thickness of all dura sheets 
was used for all tests. Furthermore, initial apex deflections 
with ± 1 mm yielded essentially the same curves for 
deflections greater than 35 percent of the initial deflection. 

Because the styrene-butadiene tests gave strikingly similar 
results with our test protocol, and the numerical methods 
yielded consistent results with variables easily specified within 
error tolerances smaller than those required, we are confident 
the source of the stiffness variance is the material itself. 

We expected the material stiffness would be dependent on 
fetal development; specifically, that a more mature fetus 
would have stiffer dura. Although our sample size is not large 
enough to make conclusive observations, Fig. 8 indicates that 
material stiffness is indeed directly dependent on the physical 
development of the fetus. 

In summary, this study demonstrates that the shape of the 
load-deflection curve of fetal dura mater can be approximated 
by the strain energy function defined by Skalak and associates 
[19]. The effects of potentially confounding factors such as 
cause of death and membrane preparation, storage, and 
moisture content need to be studied to further reduce the 
variation in the computed stiffness values. Correlations 
between stiffness and other physiological variables, such as 
membrane thickness, may also be discovered. 
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