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Abstract 

The selective laser melting (SLM) process is an Additive Manufacturing (AM) technique that uses 
a laser to fuse successive layers of powder into near fully dense components. Due to the large 
energy input from the laser during processing, vaporization and instabilities in the melt pool occur 
causing the formation of condensate and laser spatter, collectively known as heat-affected powder. 
Since heat-affected powder settles into the powder bed, the properties of the unconsolidated 
powder may be altered compromising its reusability. In this study, characterization of 304L heat-
affected powder was performed through particle size distribution measurements, x-ray diffraction, 
metallography, energy-dispersive spectroscopy mapping, and visualization of grain structure with 
the aid of a focused-ion beam. The results show morphological, microstructural, and surface 
chemistry differences between the starting powder and heat-affected powder formed during 
processing which aid in the understanding of laser spatter and condensate that form in the SLM 
process. 
 

Introduction 
 

Powder-bed fusion refers to a subset of Additive Manufacturing (AM) processes that bond 
powder layers in a sequential manner for the production of three-dimensional components directly 
from Computer-Aided Design (CAD) files [1]. Among this class of manufacturing techniques is 
the selective laser melting (SLM) process where a laser scans across a powder-bed melting and 
consolidating particles to form parts that approach theoretical density [2,3]. The layer thickness is 
often no more than 70 µm facilitating the construction of fine features and, thus, overall 
geometrical complexity. Consequently, SLM has attracted a significant amount of interest from a 
wide variety of areas involving biomedical, aeronautical, and automotive applications. 

 
A large portion of the research conducted in SLM has been focused on adjusting laser 

process parameters for manufacturability of a variety of materials such as Ti-6Al-4V [4,5], 
316/316L stainless steel [6,7], and IN718 [8,9]. Typically, these variables include the laser power, 
scan speed, and hatch spacing for which an optimal combination is found to minimize porosity. 
Other work in SLM has been centered on the interaction of the laser beam with the powder-bed 
through heat and fluid flow simulations for insight into melt pool formation and cooling rates [10–
12]. In general, it is found that the melt pool experiences high thermal gradients giving rise to 
strong Marangoni convection currents, which play a large role in the wetting behavior of the melt 
on the previously solidified layer. Adding to the complexity of the process is the dependence of 
the melt pool wettability on the oxygen content where the balling phenomenon can be induced as 
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a result of the presence of oxides [13,14]. The onset of balling indicates a lack of wetting and can 
ultimately cause the formation of porosity and possible damage to the recoating mechanism. 
Results from simulations also show that the melt pool experiences a high degree of superheat 
leading to vaporization of material and subsequent ejection of material. Rapid vaporization of 
material is known to cause melt pool instabilities by providing a large upsurge of vertical 
momentum in the melt pool causing molten material to be ejected in the form of laser spatter [15–
17]. Moreover, vaporized material that escapes the melt pool rapidly solidifies in the chamber 
atmosphere causing the formation of nano-particles, more commonly known as condensate, that 
coat the inside of the build chamber during the SLM process. If generated in excess or not 
adequately removed, condensate can lead to attenuation and defocusing of the laser beam causing 
pore formation due to a lack of fusion [18–21]. 

 
The collection of both laser spatter and condensate is hereby referred to as heat-affected 

powder as it is formed under high temperature conditions originating from the melt pool. In SLM, 
studies regarding laser spatter characterization and the potential consequences of its formation on 
part quality are seldom. Simonelli et al. [22] characterized the spatter formed from 316L stainless 
steel, Al-Si10-Mg, and Ti-6Al-4V generated during SLM. It was found that laser spatter is not 
only comprised of particles much larger than the base powder, but is also chemically different as 
a result of oxidation on the outer surfaces of the particles. Liu et al. [19] also found that laser 
spatter generated from processing 316L was large with some particles having an approximate 
diameter of 400 µm. Although typical procedures involve sieving of used powder to eliminate 
these large particles for recycling, Liu et al. processed used 316L powder without sieving and 
found that the tensile properties of the parts exhibited decreased strength and elongation which 
were attributed to laser spatter contamination of the powder-bed. From both of these studies, it is 
clear that laser spatter’s large size allows for it to settle into the powder-bed thus compromising 
the reusability of the powder. These large particles as well as the formation of oxides on their 
surfaces may be a reason why researchers often find a coarsening particle size distribution and 
increase in oxygen content when performing recycling studies for various materials [23–25]. 

 
Although characterization of laser spatter has been performed in the aforementioned 

studies, more in-depth research needs to be conducted to rigorously understand the properties of 
laser spatter and its potential impact on the SLM process. Since laser spatter and condensate are 
coupled, characterization of condensate is also necessary, which, to our knowledge, has yet to be 
considered in the SLM community. Therefore, this study characterizes heat-affected powder in an 
attempt to understand how 304L stainless steel evolves with reuse during the SLM process. The 
characterization performed highlights the morphological, chemical, and microstructural 
differences observed between virgin 304L and heat-affected powder, thereby providing 
explanations for the changes often observed by researchers in recycled powder 

 
Experimental Methods 

 
A Renishaw AM250 SLM machine was used for fabrication of parts whose sole purpose 

was to produce heat-affected powder for subsequent characterization. The AM250 is equipped 
with a 200W Nd-YAG 1070 nm pulsed laser that has a Gaussian beam intensity profile. To ensure 
minimal oxidation of the parts, the entire build chamber was rendered inert until a stabilized 
oxygen content below 1000 ppm was observed. During operation, a constant 400 ft3/min 
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volumetric flow rate of argon crossflow was maintained across the build plate to serve as a 
shielding gas against oxidation and for adequate removal of melt pool ejecta from the path of the 
laser beam. 

 
Since heat-affected powder is formed by the interaction of the laser beam with the powder-

bed, increasing the area to be melted in each layer ultimately leads to a larger amount of spatter 
and condensate generation. Thus, in order to generate a significant amount of heat-affected powder 
for analysis, it was desired to utilize a large portion of the build area without requiring copious 
time and resources. Consequently, 50% of the substrate area was chosen as a means to fulfill these 
requirements where a 5x5 array of plates each 15 mm in height was selectively melted as illustrated 
in Figure 1. 

 
The powder used in this study was argon gas-atomized 304L stainless steel purchased from 

LPW Technology with its chemical composition listed in Table 1. Before being inserted into the 
Renishaw AM250, all virgin powder was sieved using a 63 µm screen in an argon atmosphere for 
removal of aggregates, breakup of agglomerates, and minimization of oxygen introduction into the 
build chamber. Once loaded in the SLM machine, the powder was dispensed and spread across the 
substrate for assessment of layer uniformity. 

 
Due to direction of the argon crossflow, the location immediately downstream of the build 

plate (Figure 1) becomes concentrated in laser spatter and condensate during part fabrication. For 
this reason, a powder sample was taken from this area (heat-affected powder) using a clean spatula, 
thereby excluding the unconsolidated powder in the powder bed. An additional sample was taken 
from one of the walls of the build chamber in attempt to obtain a highly concentrated sample of 
condensate material. Characterization of this sample was performed with the use of a scanning 
electron microscope (SEM) as well as energy-dispersive spectroscopy (EDS). In an attempt to 
separate laser spatter from condensate for characterization of each individually, the heat-affected 

Individual Part 

Heat-Affected 
Powder 

Collection Site 

Inert Gas Flow Direction 

15 mm 

30 mm 30 mm 

Figure 1. Illustration of the experimental setup of the build. The combined area of the parts for 
each layer corresponds to 50% of the substrate area. 

Substrate 
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powder was sieved using an ATM Sonic Sifter using 25 µm and 45 µm screens for separation into 
three size ranges, namely, -25 µm, +25 -45 µm, and +45 µm. Each size fraction was then 
homogenized using a Turbula T2C mixer to eliminate sampling bias and analyzed in regards to 
morphology, chemistry, and microstructure. 

 
Table 1. Chemical composition of virgin 304L stainless steel powder. 

  Element 
  C Cr Cu Fe Mn N Ni O P S Si 

Wt % 0.018 18.4 < 0.1 Bal 1.4 0.06 9.8 0.02 0.012 0.005 0.63 
 
Morphological characterization carried out in this study employed the use of three SEMs: 

Hitachi S4700, FEI Helios NanoLab 600, and an ASPEX 1020. While imaging and EDS were 
performed across all instruments, the automated feature analysis (AFA) capability of the ASPEX 
1020 was employed for generation of particle size distributions and determination of particle shape 
using the circularity shape factor as outlined by Cox [26]. AFA allows the user to establish a region 
of interest on a sample and then measure specific properties of the encompassed features including 
projected area, perimeter, and chemistry. Each of the particle size distributions obtained was from 
at least 2500 particles to generate reliable distributions [27]. All number distributions were 
converted to a volume basis assuming a spherical shape for each particle. 

 
Chemical characterization of each powder sample involved the use of EDS for an 

approximation of elemental concentration. To avoid possible discrepancies in the EDS results due 
to particle curvature [25], each powder sample was mounted in epoxy, ground, and polished to 
0.05 µm using a small force in each step to minimize particle pullout. Before insertion into the 
SEM, an Au/Pd coating was applied to each mounted powder sample and electrically grounded 
with copper tape to eliminate charging and beam deflection. EDS measurements were taken at 
various locations on several particles for comparison of chemistry. Further use of EDS involved 
mapping across the polished surface of a large heat-affected powder particle for insight into 
potential segregation of Cr and Ni. Oxides on heat-affected powder were investigated by a focused-
ion beam (FIB) for milling and imaging the oxide/metal interface. 

 
For identification of phases present, a Panalytical X’Pert Pro Multi-Purpose Diffractometer 

was utilized to perform subsequent analysis using Rietveld refinement for quantification of the 
volume percentage of phases present. 

 
Results and Discussion 

 
Morphological Characterization 
 
 Electron micrographs of the -63 µm virgin 304L used for part fabrication as well as the 
heat-affected powder downstream of the build area sieved at various size fractions are shown in 
Figure 2. Although large particles greater than 100 µm clearly exist, it is apparent that particles 
below 25 µm exist as well. Thus, heat-affected powder is comprised of particles with a large size 
range, all of which have the potential to be redeposited on parts or in the powder bed. Particles 
larger than the base powder that fall onto parts can cause issues during fabrication including lack 
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of fusion due to the inability to be fully melted by the laser, and damage to the recoater mechanism 
affecting the powder-bed density. If redeposited in the powder bed and not subsequently melted, 
the size distribution of the unconsolidated powder will undoubtedly be altered. As a result, the 
deposition of large particles in the powder bed can contribute to the coarsening of powder with 
continual reuse. Although sieving may serve as an effective means towards removing these large 
particles, such a procedure will not be able to eliminate all heat-affected powder since it is 
composed of particles similar in size to virgin 304L. 
 
 Although aggregates are present in all size fractions, it is important to note that many of 
the particles exhibit a high degree of circularity when compared to the base powder. Thus, the 
cooling rate was low enough to allow surface tension forces to shape the molten material into 
spheres during flight. This is the reason why the particles in +45 µm size fraction appear to be the 
most circular of all the samples observed. Verification of this observation was made through the 
quantification of the particle shape through circularity. The average circularity for each sample is 

(a) (b) 

(c) 

100 µm 

100 µm 100 µm 

(d) 

Figure 2. Heat-affected powder sieved at various size fractions taken with ASPEX SEM, 
including (a) Virgin 304L, (b) -25 µm, (c) +25/-45 µm, and (d) +45 µm. 

100 µm 
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tabulated in Table 2. The closer the circularity value is to unity, the more circular the geometry. 
The coarsest size fraction can be seen to have the highest circularity illustrating its sphericity in 
comparison to the other samples. Surprisingly, virgin 304L exhibits the lowest circularity even 
though no aggregates or agglomerates in the sample were noticed. 
 
 

Table 2. A listing of the D10, D50, and D90 on a number and volume basis for each measured 
size distribution with incorporation of the minimum and maximum particle size. A comparison 

of shape using the circularity shape factor is also provided. 

 Sample 
  Virgin 304L -25 µm +25 -45 µm +45 µm 

Dn10 (µm) 16.1 16.9 31.4 46.1 
Dn50 (µm) 21.4 22.1 37.9 55.7 
Dn90 (µm) 31.4 29.0 46.1 78.2 
Dv10 (µm) 19.2 19.0 33.4 49.5 
Dv50 (µm) 27.5 25.5 40.8 66.7 
Dv90 (µm) 38.3 33.7 51 94.6 

Minimum (µm) 0.3 1.8 10.2 20.3 
Maximum (µm) 54.5 48.4 65.9 123.1 

Circularity 0.81 0.89 0.83 0.90 
 
 
 Figure 3 gives the particle size distributions of each sample in number and volume 
representations. Information regarding the D10, D50, and D90 for the number and volume 
distributions is given in Table 2. Among the distributions shown, the virgin 304L has the highest 
number of fines present even when compared to the -25 µm size fraction. Since one of the main 
goals of sieving was to separate laser spatter from condensate, this result indicates that the presence 
of condensate in the region where the heat-affected powder was collected is either minimal or 
unable to be measured by AFA due to its small size of approximately 100 nm for mild steel. 
However, it is important to note that particles of this size were never observed in any of the 
micrographs taken of the heat-affected powder samples, with the smallest particle size measured 
being 1.8 µm. This could indicate that a significant amount of condensate generated is entrained 
in the argon flow across the build area and subsequently removed rather than depositing in the 
powder bed. A word of caution concerning this result is that the removal of condensate strongly 
depends on the inlet gas flow geometry and the magnitude of the flow during the process [18,20]. 
Therefore, this finding does not apply universally and should be investigated by each researcher 
to ensure adequate removal of laser byproduct for quality control.  
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 While condensate was not detected in the heat-affected powder collected downstream of 
the build area, images of the sample taken from the chamber wall can be seen in Figure 4, which 
reveals the appearance of powder similar in size to what is reported in literature regarding 
condensate as previously mentioned. As a consequence of its size, the powder agglomerates and 
loosely adheres to surfaces in the build chamber producing a thin film of material that collects on 
most surfaces in the build chamber during processing, and exhibits a blackened appearance. The 
relatively small size of condensate particles indicates that vaporization of material occurred while 
parts were being built and was immediately quenched in the chamber atmosphere. 
 

 
Chemical Characterization 
 
 While Figure 2 illustrates the morphological differences between the base and heat-affected 
powder, it is obvious that the surfaces of some heat-affected particles contain dark regions 

10 µm 1 µm 

Figure 4. Images of a sample taken from the chamber wall after part fabrication showing 
heavy concentration of condensate. 

(a) (b) 

Figure 3. Particle size distributions of virgin 304L and size fractions of heat-affected powder in 
(a) number distribution and (b) volume distribution. 
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indicative of a lower atomic number. Since the precursor powder does not contain such features, 
it was of interest to chemically identify these regions and provide rationale for their formation. 
 
 Identification of the chemical species present was performed by EDS in the ASPEX 1020. 
Rather than simply do a point EDS on the surface of particles, samples of virgin 304L and heat-
affected powder were mounted in epoxy and cross-sectioned before insertion into the SEM. Figure 
5 shows the powder cross-sections produced by mounting and polishing as well as the points of 
exposure for EDS measurement. Immediately noticeable are the previously observed structures 
(white arrows) present on the particle surfaces in Figure 5b where no distinct penetration into the 
underlying particle bulk is obvious. EDS measurements for each of the indicated locations are 
provided in Table 3. Given the uncertainty in EDS, the slight variability in the elemental 
concentrations in points 1 – 6 show no significant differences in bulk chemistry among the two 
powders. However, points 7 and 8 reveal a strong presence of Mn, Si, and O. Since Mn and Si are 
strong oxide formers and the observed features are located on the surface of the particles, these 
regions are most likely oxides that formed while the particles were in flight after being ejected 
from the melt pool. Simonelli [22] found a very similar result when studying 316L laser spatter 
formed during SLM. Chasoglou [28] also observed the same oxide island features on a water-
atomized steel powder for use in powder metallurgy. After using XPS, it was concluded that these 
oxides contain Fe and Cr in addition to Mn and Si. For a more thorough characterization of the 
oxides present, a similar approach will need to be taken to enable a look into the bonding states of 
the elements present. 
 

25 µm 25 µm 

(a) (b) 

1 

3 2 

4 

5 

6 

7 

8 

Figure 5. Electron micrographs of cross-sectioned (a) virgin 304L and (b) heat-affected 
powder. The white arrows indicate surface features present on heat-affected particles, and 

the black arrows represent the location of EDS performed on said regions. 
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Table 3. EDS measurements at various locations on virgin powder and heat-affected particles. 

 Element (Wt %) 
Location Fe Cr Ni Mn O C Si 

1 64.7 22.3 7.0 2.5 1.9 1.3 0.3 
2 63.0 22.0 7.9 2.1 3.3 1.5 0.3 
3 63.4 21.4 7.5 3.2 2.3 1.7 0.5 
4 65.3 21.1 7.5 2.7 1.6 1.6 0.2 
5 64.2 21.6 6.7 3.0 2.5 1.5 0.5 
6 63.0 21.6 8.4 3.0 2.2 1.4 0.4 
7 2.6 7.7 0.5 17.3 53.4 7.1 11.3 
8 1.5 5.9 0.5 9.0 61.6 5.8 15.8 

 

 While the presence of oxides on the surfaces of heat-affected particles is reasonable due to 
the 1000 ppm oxygen content of the build atmosphere during operation, the formation of islands 
of oxides is less intuitive and deserves an explanation. The current theory regarding oxidation of 
metals can be categorized into four stages: induction, nucleation, growth, and coalescence [29,30]. 
Induction is the time preceding nucleation of oxide islands where the dissociation of oxygen 
molecules and subsequent chemisorption of oxygen occur on the metal surface. Once a sufficient 
oxygen concentration is reached, stable oxide nuclei form and grow. During the growth stage, the 
oxides will merge and coalesce becoming larger to eventually create a continuous film of oxide. 
 
 The oxide islands in Figure 5b seem to follow this four stage progression where the features 
were in the growth phase until the particle cooled. One important detail of this reaction sequence 
is the penetration of oxide into the underlying metal as a result of oxygen diffusion into the metal 
lattice. For observation of consumption of the metal particle by the oxide, a FIB was used to 

25 µm 3 µm 

Figure 6. (a) Electron micrograph of a polished heat-affected particle with a large oxide on 
its surface where the black rectangle indicates a region for subsequent FIB analysis, and 

(b) FIB image of the oxide/metal interface, as denoted by the black arrow. 
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generate a cross-section of the oxide/metal interface of a polished heat-affected particle. Figure 6a 
shows the heat-affected particle selected as well as the region of interest denoted by a black 
rectangle. The oxide/metal interface in Figure 6b clearly shows a curvature meaning the oxide 
consumed a portion of the metal, a result that is explained in detail by Zhou [30]. 
 
 Due to the relatively slow cooling rate of large particles, the developed microstructure 
could possibly chemically segregate as a consequence of solute rejection from the melt. Depending 
on the solidification mode of the stainless steel, the chromium and nickel will either be retained in 
the solid or rejected ahead of the solidification front. Although such a result is uncommon for high 
cooling rates, solute redistribution is a common occurrence in alloys as the cooling rate decreases. 
In order to evaluate if microsegregation of elements occurs in the larger particles, EDS maps of 
cross-sectioned particle surface were generated. The EDS maps generated for a large heat-affected 
particle can be seen in Figure 7. Based on the results, microsegregation could not be detected given 
the resolution limit of EDS. 
 
 The chemistry of the condensate was also investigated with EDS for insight into possible 
elemental vaporization. For this investigation, the powder sample collected from the chamber wall 
was examined since it was found that the powder collected there has a concentration of condensate 
relative to the heat-affected powder collected downstream of the build area. In order to avoid the 
effects of interaction volume skewing the measurements, a particle with a large amount of 
agglomerated condensate was found and analyzed, as depicted in Figure 8. The EDS results in 
Table 4 reveal a significant amount of each element found in the base powder with the exception 
of Ni. This indicates vaporization of all the elements present within the melt pool suggesting that 
a large amount of superheat is generated during processing. Although it is still not clear whether 
condensate is deposited inside the build area since none was found in the heat-affected powder 
sample, this result does show vaporization of all elements occurred. Therefore, potential chemistry 
modifications may need to be made to the precursor powder to have more control over part 
chemistry. 
 

10 µm 

25 µm 

 Fe  Cr  O 

 C  Si Mn 

 Ni 

Figure 7. EDS maps of a large heat-affected powder particle showing no evidence of 
microsegregation. 
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Table 4. EDS results of condensate showing a large amount of all elements present. 
 Element 
  C O Si Cr Mn Fe Ni 

Wt % 12.52% 17.37% 16.53% 12.53% 5.99% 32.03% 3.02% 
 
Microstructural Characterization 
 
 Identification of the phases present within the powder samples was performed through XRD 
for virgin 304L, heat-affected powder and its size fractions. Figure 9 shows the obtained diffraction 
patterns indicating a strong presence of austenite and delta ferrite in all analyzed samples. Virgin 
304L is nearly pure austenite while heat-affected powder shows significant delta ferrite. Moreover, 
the amount of each phase varies as a function of the size fraction where the primary austenite peak 
at 44° is less prominent as the particle size increases indicating an increase in delta ferrite. 
Quantification of the XRD diffraction patterns was performed through Rietveld refinement and 
can be seen graphically in Figure 10 accompanied by the tabulated results in Table 5. Since the 
chemistry of each fraction is nearly the same as previously confirmed by EDS, the observed trend 
is indicative of a cooling rate difference between the smallest and largest particles. Therefore, 
further investigation must include the estimation of cooling rate as a function of particle size to 
view this correlation. 
 
 

5 µm 

Figure 8. Heat-affected particle with condensate on its surface. The white cross-hairs indicate the 
location of EDS measurement. 
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Table 5. Quantification of austenite and delta ferrite fractions for heat-affected powder and its 
various size fractions in comparison to virgin 304L. 

 Sample 
  Virgin 304L Heat-Affected -25 µm +25 -45 µm +45 µm 

Austenite (%) 98.5 60.8 93.9 88.3 71.8 
Delta Ferrite (%) 1.5 39.2 6.1 11.7 28.2 
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Figure 9. XRD diffraction patterns of heat-affected powder and its size fractions compared to 
virgin 304L. 

Figure 10. Quantification of XRD diffraction patterns using Rietveld refinement illustrating the 
dependence of delta ferrite formation on the particle size. 
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 The difference in the relative proportion of austenite and delta ferrite formation can be 
explained through the determination of solidification mode, or the sequence of phase 
transformations that occurs during solidification and subsequent cooling as a solid. Since 
chromium and nickel are strong delta ferrite and austenite stabilizers, respectively, the 
solidification mode in stainless steels is often determined through the ratio of chromium to nickel 
equivalencies (Creq/Nieq). A listing of the available methods for evaluation of Creq/Nieq is given 
by Kiorinko et al. [31]. In general, there exist four types of solidification modes [32]: 
 

1. A mode: L  L+ γ  γ  for Creq/Nieq < 1.25 
2. AF mode: L  L+ γ  L+ 𝛿𝛿 + γ  γ + 𝛿𝛿  γ for 1.25 < Creq/Nieq < 1.48 
3. FA mode: L  L+ 𝛿𝛿  L+ 𝛿𝛿 + γ  γ + 𝛿𝛿  γ for 1.48 < Creq/Nieq < 1.95 
4. F mode: L  L+ 𝛿𝛿  𝛿𝛿  𝛿𝛿 + γ  γ for Creq/Nieq > 1.95 

 
Using the chemistry of the virgin powder provided by LPW Technology (Table 1) and calculating 
the Creq/Nieq using the Hull expression, we find that 304L will solidify as primary ferrite and then 
austenite (FA). At high cooling rates, the solid-state transformation of delta ferrite to austenite is 
hindered thus allowing retention of the delta ferrite phase. However, at even higher cooling rates 
approaching 105 K/s, it is possible for the solidification mode to change from FA to AF as a result 
of a sufficient amount of undercooling. Since virgin 304L is gas-atomized where typical cooling 
rates are on the order of 105 K/s, it is reasonable that 304L is primarily austenite. If the percentage 
of delta ferrite decreases with increasing cooling rate, it is reasonable to assume that the smaller 
size fractions (-45 µm) are approaching an AF solidification mode whereas the large particles are 
solidifying as FA. 
 
 A few studies [33,34] have demonstrated that powder properties can influence phase 
formation in as-built components. While the influence of particle microstructure on part properties 
is out of the scope of this paper, it is important to understand the formation of delta ferrite indicates 
the presence of heat-affected powder. Thus, phase quantification could prove as a viable approach 
towards assessing the degree of which a powder has been used. 
 

Conclusions 
 

 In this study, the morphological, chemical, and microstructural properties of heat-affected 
powder were investigated for insight into the expected changes that are to occur as a result of 
recycling 304L stainless steel in the SLM process. While previous studies primarily focus on laser 
spatter, emphasis in the current study was placed on the combination of laser spatter and 
condensate for a more comprehensive characterization of ejecta originating from the melt pool. 
Clear identification of both laser spatter and condensate was accomplished by collecting two 
samples: heat-affected powder downstream of the build area, and a sample from the wall of the 
chamber after building parts. The collected heat-affected powder was found to be primarily laser 
spatter, suggesting that most of the condensate does not deposit in the build area. However, such 
a conclusion is highly dependent on the magnitude of argon crossflow employed as well as the 
geometry of the build chamber and inlet gas manifold. Thus, each researcher must study the flow 
inside the build chamber for insight into condensate deposition inside the build chamber. The size 
of laser spatter particles was found to exist across a large size range where, once ejected, deposition 
into the build area is possible, potentially compromising powder reuse. Although the size range is 
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large, the average circularity of the laser spatter in each size fraction was found to be greater than 
that of that the base powder. It is important to note that aggregates were found to exist as a 
consequence of particles merging while molten. 
 
 Investigation of powder chemistry led to the observation of oxide islands on laser spatter. 
These oxides are rich in Mn and Si, which are strong oxide formers. Further analysis revealed that 
these oxides nucleate and grow on the surfaces of particles. Depending on the growth rate of the 
oxides, the coalescence of these islands will vary, producing oxides of various size. EDS also 
allowed for identification of the chemical species available in condensate powder. Based on these 
results, it is clear that the condensate is comprised of appreciable amounts of all alloying elements 
present in the base powder, providing evidence for large superheat in the melt pool. 
 
 Microstructural analysis of the heat-affected size fractions and virgin 304L through XRD 
showed varying amounts of austenite and delta ferrite. In general, it was found that the percentage 
of delta ferrite increased with increasing particle size. These results were attributed to the large 
difference in cooling rates experienced by the large and small particles, enabling the switch from 
FA to AF solidification mode through an increased undercooling. Since delta ferrite is a marker of 
heat-affected powder, phase identification is a viable technique for distinguishing between virgin 
and used 304L powder. 
 
 The results from this study show that 304L will change as it is reused in SLM. Even though 
the degree of its reusability has yet to be determined, changes in the properties of recycled powder 
can now be better understood with knowledge of the mechanisms responsible for powder 
degradation. This investigation shows that not only the size distribution of the unconsolidated 
powder will be altered with continual reuse, but also its chemistry due to the formation of oxides. 
The effects of such changes in powder properties on part quality will be evaluated in the future to 
assess the reusability of 304L in SLM. 
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