26 research outputs found

    A double-blind comparative study of the safety and efficacy of caspofungin versus micafungin in the treatment of candidiasis and aspergillosis

    Get PDF
    The safety and efficacy profile of caspofungin and micafungin in Japanese patients with fungal infections were directly compared in this prospective, randomized, double-blind study. The proportion of patients who developed significant drug-related adverse event(s) (defined as a serious drug-related adverse event or a drug-related adverse event leading to study therapy discontinuation) was compared in 120 patients [caspofungin 50 mg, or 50 mg following a 70-mg loading dose on Day 1 (hereinafter, 70/50 mg) group: 60 patients; micafungin 150 mg: 60 patients]. The overall response rate was primarily evaluated in the per-protocol set (PPS) population. The proportion of patients who developed significant drug-related adverse events was 5.0 % (3/60) in the caspofungin group and 10.0 % (6/60) in the micafungin group [95 % confidence interval (CI) for the difference: -15.9 %, 5.2 %]. The favorable overall response in the PPS population for patients with esophageal candidiasis, invasive candidiasis, and chronic pulmonary aspergillosis including aspergilloma was 100.0 % (6/6), 100.0 % (3/3), and 46.7 % (14/30) in the caspofungin group, and 83.3 % (5/6), 100.0 % (1/1), and 42.4 % (14/33) in the micafungin group, respectively. In Japanese patients with Candida or Aspergillus infections, there was no statistical difference in the safety between caspofungin and micafungin. Consistent with other data on these two agents, the efficacy of caspofungin and micafungin was similar

    Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is an opportunistic human pathogen and one of the leading causes of nosocomial infections worldwide. The difficulty in treatment of pseudomonas infections arises from being multidrug resistant (MDR) and exhibits resistance to most antimicrobial agents due to the expression of different mechanisms overcoming their effects. Of these resistance mechanisms, the active efflux pumps in Pseudomonas aeruginosa that belong to the resistance nodulation division (RND) plays a very important role in extruding the antibiotics outside the bacterial cells providing a protective means against their antibacterial activity. Beside its role against the antimicrobial agents, these pumps can extrude biocides, detergents, and other metabolic inhibitors. It is clear that efflux pumps can be targets for new antimicrobial agents. Peptidomimetic compounds such as phenylalanine arginyl β-naphthylamide (PAβN) have been introduced as efflux pump inhibitors (EPIs); their mechanism of action is through competitive inhibition with antibiotics on the efflux pump resulting in increased intracellular concentration of antibiotic, hence, restoring its antibacterial activity. The advantage of EPIs is the difficulty to develop bacterial resistance against them, but the disadvantage is their toxic property hindering their clinical application. The structure activity relationship of these compounds showed other derivatives from PAβN that are higher in their activity with higher solubility in biological fluids and decreased toxicity level. This raises further questions on how can we compact Pseudomonas infections. Of particular importance, the recent resurgence in the use of older antibiotics such as polymyxins and probably applying stricter control measures in order to prevent their spread in clinical sittings

    A Man with Diabetes and Nonresolving Cavitary Pneumonia

    No full text
    corecore