80 research outputs found
Conservation in two-particle self-consistent extensions of dynamical-mean-field-theory
Extensions of dynamical-mean-field-theory (DMFT) make use of quantum impurity
models as non-perturbative and exactly solvable reference systems which are
essential to treat the strong electronic correlations. Through the introduction
of retarded interactions on the impurity, these approximations can be made
two-particle self-consistent. This is of interest for the Hubbard model,
because it allows to suppress the antiferromagnetic phase transition in
two-dimensions in accordance with the Mermin-Wagner theorem, and to include the
effects of bosonic fluctuations. For a physically sound description of the
latter, the approximation should be conserving. In this paper we show that the
mutual requirements of two-particle self-consistency and conservation lead to
fundamental problems. For an approximation that is two-particle self-consistent
in the charge- and longitudinal spin channel, the double occupancy of the
lattice and the impurity are no longer consistent when computed from
single-particle properties. For the case of self-consistency in the charge- and
longitudinal as well as transversal spin channels, these requirements are even
mutually exclusive so that no conserving approximation can exist. We illustrate
these findings for a two-particle self-consistent and conserving DMFT
approximation.Comment: 17 pages, 9 figure
Single-boson exchange decomposition of the vertex function
We present a decomposition of the two-particle vertex function of the single-band Anderson impurity model which imparts a physical interpretation of the vertex in terms of the exchange of bosons of three flavors. We evaluate the various components of the vertex for an impurity model corresponding to the half-filled Hubbard model within dynamical mean-field theory. For small values of the interaction almost the entire information encoded in the vertex function corresponds to single-boson exchange processes, which can be represented in terms of the Hedin three-leg vertex and the screened interaction. Also for larger interaction, the single-boson exchange still captures scatterings between electrons and the dominant low-energy fluctuations and provides a unified description of the vertex asymptotics. The proposed decomposition of the vertex does not require the matrix inversion of the Bethe-Salpeter equation. Therefore, it represents a computationally lighter and hence more practical alternative to the parquet decomposition
Two-particle Fermi liquid parameters at the Mott transition: Vertex divergences, Landau parameters, and incoherent response in dynamical mean-field theory
We consider the interaction-driven Mott transition at zero temperature from the viewpoint of microscopic Fermi liquid theory. To this end, we derive an exact expression for the Landau parameters within the dynamical mean-field theory (DMFT) approximation to the single-band Hubbard model. At the Mott transition, the symmetric and the antisymmetric Landau parameters diverge. The vanishing compressibility at the Mott transition directly implies the divergence of the forward-scattering amplitude in the charge sector, which connects the proximity of the Mott phase to a tendency toward phase separation. We verify the expected behavior of the Landau parameters in a DMFT application to the Hubbard model on the triangular lattice at finite temperature. Exact conservation laws and the Ward identity are crucial to capture vertex divergences related to the Mott transition. We furthermore generalize Leggett's formula for the static susceptibility of the Fermi liquid to the static fermion-boson response function. In the charge sector, the limits of small transferred momentum and frequency of this response function commute at the Mott transition
Assessing storm surge hazard and impact of sea level rise in the Lesser Antilles case study of Martinique
In the Lesser Antilles, coastal inundations from
hurricane-induced
storm surges pose a great threat to lives, properties and
ecosystems. Assessing current and future storm surge hazards with
sufficient spatial resolution is of primary interest to help coastal
planners and decision makers develop mitigation and adaptation
measures. Here, we use wave–current numerical models and statistical
methods to investigate worst case scenarios and 100-year surge
levels for the case study of Martinique under present climate or
considering a potential sea level rise. Results confirm that the
wave setup plays a major role in the Lesser Antilles, where the narrow
island shelf impedes the piling-up of large amounts of wind-driven
water on the shoreline during extreme events. The radiation stress
gradients thus contribute significantly to the total surge – up to
100 % in some cases. The nonlinear interactions of sea level
rise (SLR) with bathymetry and topography are generally found to be
relatively small in Martinique but can reach several tens of
centimeters in low-lying areas where the inundation extent is
strongly enhanced compared to present conditions. These findings
further emphasize the importance of waves for developing operational
storm surge warning systems in the Lesser Antilles and encourage
caution when using static methods to assess the impact of sea level
rise on storm surge hazard
The pH of the skin surface and its impact on the barrier function
The `acid mantle' of the stratum corneum seems to be important for both permeability barrier formation and cutaneous antimicrobial defense. However, the origin of the acidic pH, measurable on the skin surface, remains conjectural. Passive and active influencing factors have been proposed, e. g. eccrine and sebaceous secretions as well as proton pumps. In recent years, numerous investigations have been published focusing on the changes in the pH of the deeper layers of the stratum corneum, as well as on the influence of physiological and pathological factors. The pH of the skin follows a sharp gradient across the stratum corneum, which is suspected to be important in controlling enzymatic activities and skin renewal. The skin pH is affected by a great number of endogenous factors, e. g. skin moisture, sweat, sebum, anatomic site, genetic predisposition and age. In addition, exogenous factors like detergents, application of cosmetic products, occlusive dressings as well as topical antibiotics may influence the skin pH. Changes in the pH are reported to play a role in the pathogenesis of skin diseases like irritant contact dermatitis, atopic dermatitis, ichthyosis, acne vulgaris and Candida albicans infections. Therefore, the use of skin cleansing agents, especially synthetic detergents with a pH of about 5.5, may be of relevance in the prevention and treatment of those skin diseases. Copyright (c) 2006 S. Karger AG, Base
Opening the black box of energy modelling: Strategies and lessons learned
The global energy system is undergoing a major transition, and in energy planning and decision-making across governments, industry and academia, models play a crucial role. Because of their policy relevance and contested nature, the transparency and open availability of energy models and data are of particular importance. Here we provide a practical how-to guide based on the collective experience of members of the Open Energy Modelling Initiative (Openmod). We discuss key steps to consider when opening code and data, including determining intellectual property ownership, choosing a licence and appropriate modelling languages, distributing code and data, and providing support and building communities. After illustrating these decisions with examples and lessons learned from the community, we conclude that even though individual researchers' choices are important, institutional changes are still also necessary for more openness and transparency in energy research
Opening the black box of energy modelling: Strategies and lessons learned
The global energy system is undergoing a major transition, and in energy planning and decision-making across governments, industry and academia, models play a crucial role. Because of their policy relevance and contested nature, the transparency and open availability of energy models and data are of particular importance. Here we provide a practical how-to guide based on the collective experience of members of the Open Energy Modelling Initiative (Openmod). We discuss key steps to consider when opening code and data, including determining intellectual property ownership, choosing a licence and appropriate modelling languages, distributing code and data, and providing support and building communities. After illustrating these decisions with examples and lessons learned from the community, we conclude that even though individual researchers' choices are important, institutional changes are still also necessary for more openness and transparency in energy research
- …