212 research outputs found

    Initial Studies of Isolated Kidney Perfusion

    Get PDF
    Angiographic and gravametric studies of dog kidneys perfused with electrolyte, Dextran, or albumin solution are presented to demonstrate the possibility of extending organ preservation for transplantation without loss of function. Findings include a reduction in flow and weight gain with the nonprotein solutions and maintenance of flow with albumin solution. Gross changes of the perfused kidneys are also described

    Mass Transport Limitations in Microbial Fuel Cells:Impact of Flow Configurations

    Get PDF
    The performance of microbial fuel cells (MFCs) is limited by a number of factors, including metabolic activity of electroactive microorganisms and electrochemical systematic constraints, such as overpotentials at the electrodes or IR losses. Heterogeneities of substrate distribution (availability) can also strongly limit current in MFCs. In this work we investigate how mass transport can be enhanced by changing the flow configurations in MFCs, e.g. by directing the flow through a porous anode or by applying inserts and channels to anodes. Experimental results using a perpendicular flow through the anode were compared to a parallel flow setup, showing increased current output. Finite element method (FEM) simulations were used to simulate the flow profiles and substrate distribution in each setup. The simulations revealed higher average substrate concentrations for the perpendicular flow through a porous carbon fabric anode vs. a parallel flow in the bulk phase of the MFC, related to the enhancement of transport via convection in perpendicular flow. The simulated substrate distributions found for the different inlet setups could be correlated to the experimentally obtained current flow, power output and biofilm distribution. It can be concluded that the increased current output can be explained by the flow profile in the system resulting in an increased substrate distribution in the biofilm on the electrode and a hindered oxygen transport from the cathode

    Genomic Characterization of the Human Type I Cuticular Hair Keratin hHa2 and Identification of an Adjacent Novel Type I Hair Keratin Gene hHa5

    Get PDF
    Hair keratins, a subset of the keratin multigene family expressed in hard keratinizing structures, previously have been thought to comprise four members of each subfamily, designated Ha1-4 (type I) and Hb1-4 (type II), which are differentially expressed in the cuticle and cortex of the hair follicle. This report describes the genomic cloning and sequencing of the human type I cuticular hair keratin hHa2, as well as the identification of a previously unknown human type I hair keratin gene. The 12.5-kilobase pair genomic clone ghkI2.12, obtained by hybridization of a human genomic deoxyribonucleic acid library with a 3'–complementary deoxyribonucleic acid probe of hHa2, as well as the partially overlapping 14.4-kilobase pair genornic clone ghk12.17, isolated using a 5'-fragment of clone ghk12.12, allowed the characterization of the entire hHa2 genes The gene displays the same exon/intron structure as two previously characterized type I mouse and sheep hair/wool keratin genes with strict positional conservation of the six introns in the region coding for the central α-helix, At the 5'-extremity of clone ghk12.17, approximately 8.0 kilobase pairs upstream of the hHa2 gene and oriented in the same transcriptional direction, lies the gene for a hitherto unknown human type I hair keratin, Clone ghkl2.17 contains partial sequence information for this gene beginning with introit 5 and extending to the end of the gene. Screening of a human scalp complementary deoxyribonucleic acid library with a 3'-fragment of the gene yielded a full length complementary deoxyribonucleic acid clone of the new hair keratin, which in continuation of the current nomenclature for hair keratins was termed hHa5. Remarkably, the hHa5 gene, which contains an additional 7th intron in its 3'-noncoding region, is expressed mainly in supramatricial cells and lowermost cortical cells of the hair bulb and thus constitutes a very early component of hair morphogenesis. Our results confirm the type specific clustering of keratin genes and indicate that the human type I hair keratin subfamily contains more members than previously assume

    The Region Coding for the Helix Termination Motif and the Adjacent Intron 6 of the Human Type I Hair Keratin Gene hHa2 Contains Three Natural, Closely Spaced Polymorphic Sites

    Get PDF
    Mutations in distinct sites of epidermal keratins, in particular in the helix initiation and termination regions, cause human genodermatoses due to faulty intermediate filament formation. Extension of this observation to human hereditary hair and nail diseases includes population analyses of human hair keratin genes for natural sequence variations in the corresponding sites. Here we report on a large-scale genotyping of the short helix termination region (HTR) of the human type I cortical hair keratins hHa1, a3-I, and a3-II, and the cuticular hair keratin hHa2. We describe two polymorphic loci, P1 and P2, exclusively in the cuticular hHa2 gene, both creating dimorphic protein variants. P1 is due to a C→T mutation in a CpG element leading to a threonine→methionine substitution; P2 concerns a serine codon AGT that also occurs as an asparagine coding variant AAC. A third polymorphism, P3, is linked with a C→T point mutation located at the very beginning of intron 6. The three polymorphic sites are clustered in a 39-nucleotide sequence of the hHa2 gene. Both allelic frequency calculations in individuals of different races and pedigree studies indicate that the two-allelic hHa2 variants resulting from P1 and P2 occur ubiquitously in a ratio of about 1:1 (P1) and 2:1 (P2) respectively in our survey, and are clearly inherited as Mendelian traits. A genotype carrying both mutations simultaneously on one allele could not be detected in our sampling, and there was no association of a distinct allelic hHa2 variant with the known ethnic form variations of hairs. Sequence comparisons of the HTR of hHa2 with those of other type I hair keratins including the hHa2-ortholog from chimpanzee provide evidence that the P1- and P2-linked mutations must have occurred very early in human evolution and that the two P2-associated codon variations may be the result of two independent point mutations in an ancestral AGC serine codon. These data describe natural polymorphisms in the HTR of a member of the keratin multigene family

    MitoNeoD:a mitochondria-targeted superoxide probe

    Get PDF
    Mitochondrial superoxide (O2⋅−) underlies much oxidative damage and redox signaling. Fluorescent probes can detect O2⋅−, but are of limited applicability in vivo, while in cells their usefulness is constrained by side reactions and DNA intercalation. To overcome these limitations, we developed a dual-purpose mitochondrial O2⋅− probe, MitoNeoD, which can assess O2⋅− changes in vivo by mass spectrometry and in vitro by fluorescence. MitoNeoD comprises a O2⋅−-sensitive reduced phenanthridinium moiety modified to prevent DNA intercalation, as well as a carbon-deuterium bond to enhance its selectivity for O2⋅− over non-specific oxidation, and a triphenylphosphonium lipophilic cation moiety leading to the rapid accumulation within mitochondria. We demonstrated that MitoNeoD was a versatile and robust probe to assess changes in mitochondrial O2⋅− from isolated mitochondria to animal models, thus offering a way to examine the many roles of mitochondrial O2⋅−production in health and disease

    A sensitive mass spectrometric assay for mitochondrial CoQ pool redox state in vivo

    Get PDF
    Coenzyme Q (CoQ) is an essential cofactor, primarily found in the mitochondrial inner membrane where it functions as an electron carrier in the respiratory chain, and a lipophilic antioxidant. The redox state of the CoQ pool is the ratio of its oxidised (ubiquinone) and reduced (ubiquinol) forms, and is a key indicator of mitochondrial bioenergetic and antioxidant status. However, the role of CoQ redox state in vivo is poorly understood, because determining its value is technically challenging due to redox changes during isolation, extraction and analysis. To address these problems, we have developed a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay that enables us to extract and analyse both the CoQ redox state and the magnitude of the CoQ pool with negligible changes to redox state from small amounts of tissue. This will enable the physiological and pathophysiological roles of the CoQ redox state to be investigated in vivo

    A sensitive mass spectrometric assay for mitochondrial CoQ pool redox state in vivo.

    Get PDF
    Coenzyme Q (CoQ) is an essential cofactor, primarily found in the mitochondrial inner membrane where it functions as an electron carrier in the respiratory chain, and as a lipophilic antioxidant. The redox state of the CoQ pool is the ratio of its oxidised (ubiquinone) and reduced (ubiquinol) forms, and is a key indicator of mitochondrial bioenergetic and antioxidant status. However, the role of CoQ redox state in vivo is poorly understood, because determining its value is technically challenging due to redox changes during isolation, extraction and analysis. To address these problems, we have developed a sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay that enables us to extract and analyse both the CoQ redox state and the magnitude of the CoQ pool with negligible changes to redox state from small amounts of tissue. This will enable the physiological and pathophysiological roles of the CoQ redox state to be investigated in vivo

    Using exomarkers to assess mitochondrial reactive species in vivo

    Get PDF
    Background: The ability to measure the concentrations of small damaging and signalling molecules such as reactive oxygen species (ROS) in vivo is essential to understanding their biological roles. While a range of methods can be applied to in vitro systems, measuring the levels and relative changes in reactive species in vivo is challenging. Scope of review: One approach towards achieving this goal is the use of exomarkers. In this, exogenous probe compounds are administered to the intact organism and are then transformed by the reactive molecules in vivo to produce a diagnostic exomarker. The exomarker and the precursor probe can be analysed ex vivo to infer the identity and amounts of the reactive species present in vivo. This is akin to the measurement of biomarkers produced by the interaction of reactive species with endogenous biomolecules. Major conclusions and general significance: Our laboratories have developed mitochondria-targeted probes that generate exomarkers that can be analysed ex vivo by mass spectrometry to assess levels of reactive species within mitochondria in vivo. We have used one of these compounds, MitoB, to infer the levels of mitochondrial hydrogen peroxide within flies and mice. Here we describe the development of MitoB and expand on this example to discuss how better probes and exomarkers can be developed. This article is part of a Special Issue entitled Current methods to study reactive oxygen species - pros and cons and biophysics of membrane proteins. Guest Editor: Christine Winterbourn. Abbreviations: EPR, electron paramagnetic resonance; GFP, green fluorescent protein; 4-HNE, 4-hydroxynonenal; MitoB, 3-(dihydroxyboronyl)benzyltriphenylphosphonium bromide; MitoP, (3-hydroxybenzyl)triphenylphosphonium bromide; ROS, reactive oxygen species; SOD, superoxide dismutase; TPMP, methyltriphenylphosphonium; TPP, triphenylphosphonium catio

    Identification and quantification of protein S-nitrosation by nitrite in the mouse heart during ischemia.

    Get PDF
    Nitrate (NO3-) and nitrite (NO2-) are known to be cardioprotective and to alter energy metabolism in vivo NO3- action results from its conversion to NO2- by salivary bacteria, but the mechanism(s) by which NO2- affects metabolism remains obscure. NO2- may act by S-nitrosating protein thiols, thereby altering protein activity. But how this occurs, and the functional importance of S-nitrosation sites across the mammalian proteome, remain largely uncharacterized. Here we analyzed protein thiols within mouse hearts in vivo using quantitative proteomics to determine S-nitrosation site occupancy. We extended the thiol-redox proteomic technique, isotope-coded affinity tag labeling, to quantify the extent of NO2--dependent S-nitrosation of proteins thiols in vivo Using this approach, called SNOxICAT (S-nitrosothiol redox isotope-coded affinity tag), we found that exposure to NO2- under normoxic conditions or exposure to ischemia alone results in minimal S-nitrosation of protein thiols. However, exposure to NO2- in conjunction with ischemia led to extensive S-nitrosation of protein thiols across all cellular compartments. Several mitochondrial protein thiols exposed to the mitochondrial matrix were selectively S-nitrosated under these conditions, potentially contributing to the beneficial effects of NO2- on mitochondrial metabolism. The permeability of the mitochondrial inner membrane to HNO2, but not to NO2-, combined with the lack of S-nitrosation during anoxia alone or by NO2- during normoxia places constraints on how S-nitrosation occurs in vivo and on its mechanisms of cardioprotection and modulation of energy metabolism. Quantifying S-nitrosated protein thiols now allows determination of modified cysteines across the proteome and identification of those most likely responsible for the functional consequences of NO2- exposure
    • …
    corecore