2,168 research outputs found

    Solving the Direction Field for Discrete Agent Motion

    Full text link
    Models for pedestrian dynamics are often based on microscopic approaches allowing for individual agent navigation. To reach a given destination, the agent has to consider environmental obstacles. We propose a direction field calculated on a regular grid with a Moore neighborhood, where obstacles are represented by occupied cells. Our developed algorithm exactly reproduces the shortest path with regard to the Euclidean metric.Comment: 8 pages, 4 figure

    Characterizing correlations of flow oscillations at bottlenecks

    Full text link
    "Oscillations" occur in quite different kinds of many-particle-systems when two groups of particles with different directions of motion meet or intersect at a certain spot. We present a model of pedestrian motion that is able to reproduce oscillations with different characteristics. The Wald-Wolfowitz test and Gillis' correlated random walk are shown to hold observables that can be used to characterize different kinds of oscillations

    Scanning spreading resistance microscopy of two-dimensional diffusion of boron implanted in free-standing silicon nanostructures

    No full text
    B implants of 1keV, 1×10¹⁵at.cm⁻² into 125-nm-wide, free-standing Si nanostructures have been characterized using scanning spreading resistancemicroscopy following a 0s, 1050°Canneal in N₂. A curved diffusion front has been observed. B in the center of the ridge diffuses further than at the sides. A similar effect has been observed in SUPREM-IV simulations. It is attributed to a reduction in transient enhanced diffusion close to the vertical surfaces due to recombination of ion-implantation-induced excess Si self-interstitials

    Pedestrian Traffic: on the Quickest Path

    Full text link
    When a large group of pedestrians moves around a corner, most pedestrians do not follow the shortest path, which is to stay as close as possible to the inner wall, but try to minimize the travel time. For this they accept to move on a longer path with some distance to the corner, to avoid large densities and by this succeed in maintaining a comparatively high speed. In many models of pedestrian dynamics the basic rule of motion is often either "move as far as possible toward the destination" or - reformulated - "of all coordinates accessible in this time step move to the one with the smallest distance to the destination". Atop of this rule modifications are placed to make the motion more realistic. These modifications usually focus on local behavior and neglect long-ranged effects. Compared to real pedestrians this leads to agents in a simulation valuing the shortest path a lot better than the quickest. So, in a situation as the movement of a large crowd around a corner, one needs an additional element in a model of pedestrian dynamics that makes the agents deviate from the rule of the shortest path. In this work it is shown, how this can be achieved by using a flood fill dynamic potential field method, where during the filling process the value of a field cell is not increased by 1, but by a larger value, if it is occupied by an agent. This idea may be an obvious one, however, the tricky part - and therefore in a strict sense the contribution of this work - is a) to minimize unrealistic artifacts, as naive flood fill metrics deviate considerably from the Euclidean metric and in this respect yield large errors, b) do this with limited computational effort, and c) keep agents' movement at very low densities unaltered

    Sub 20 nm Short Channel Carbon Nanotube Transistors

    Full text link
    Carbon nanotube field-effect transistors with sub 20 nm long channels and on/off current ratios of > 1000000 are demonstrated. Individual single-walled carbon nanotubes with diameters ranging from 0.7 nm to 1.1 nm grown from structured catalytic islands using chemical vapor deposition at 700 degree Celsius form the channels. Electron beam lithography and a combination of HSQ, calix[6]arene and PMMA e-beam resists were used to structure the short channels and source and drain regions. The nanotube transistors display on-currents in excess of 15 microA for drain-source biases of only 0.4 Volt.Comment: Nano Letters in pres

    Automated Quality Assessment of Space-Continuous Models for Pedestrian Dynamics

    Full text link
    In this work we propose a methodology for assessment of pedestrian models continuous in space. With respect to the Kolmogorov-Smirnov distance between two data clouds, representing for instance simulated and the corresponding empirical data, we calculate an evaluation factor between zero and one. Based on the value of the herein developed factor, we make a statement about the goodness of the model under evaluation. Moreover this process can be repeated in an automatic way in order to maximize the above mentioned factor and hence determine the optimal set of model parameters.Comment: 8 pages, 3 figures, accepted at the Proceedings of Traffic and Granular Flow '1

    Generalized Centrifugal Force Model for Pedestrian Dynamics

    Get PDF
    A spatially continuous force-based model for simulating pedestrian dynamics is introduced which includes an elliptical volume exclusion of pedestrians. We discuss the phenomena of oscillations and overlapping which occur for certain choices of the forces. The main intention of this work is the quantitative description of pedestrian movement in several geometries. Measurements of the fundamental diagram in narrow and wide corridors are performed. The results of the proposed model show good agreement with empirical data obtained in controlled experiments.Comment: 10 pages, 14 figures, accepted for publication as a Regular Article in Physical Review E. This version contains minor change

    Experimental study of pedestrian flow through a bottleneck

    Get PDF
    In this work the results of a bottleneck experiment with pedestrians are presented in the form of total times, fluxes, specific fluxes, and time gaps. A main aim was to find the dependence of these values from the bottleneck width. The results show a linear decline of the specific flux with increasing width as long as only one person at a time can pass, and a constant value for larger bottleneck widths. Differences between small (one person at a time) and wide bottlenecks (two persons at a time) were also found in the distribution of time gaps.Comment: accepted for publication in J. Stat. Mec

    Quickest Paths in Simulations of Pedestrians

    Full text link
    This contribution proposes a method to make agents in a microscopic simulation of pedestrian traffic walk approximately along a path of estimated minimal remaining travel time to their destination. Usually models of pedestrian dynamics are (implicitly) built on the assumption that pedestrians walk along the shortest path. Model elements formulated to make pedestrians locally avoid collisions and intrusion into personal space do not produce motion on quickest paths. Therefore a special model element is needed, if one wants to model and simulate pedestrians for whom travel time matters most (e.g. travelers in a station hall who are late for a train). Here such a model element is proposed, discussed and used within the Social Force Model.Comment: revised version submitte
    corecore