5 research outputs found

    Whirl Flutter and the Development of the NASA X-57 Maxwell

    Get PDF
    The X-57 Maxwell is NASAs all-electric demonstration vehicle. The primary demonstration objective of this flight test program is to show a factor of five reduction in energy consumption. The vehicle includes two large wing tip propellers designed to provide propul- sion at cruise conditions and twelve leading edge propellers designed to operate at high lift conditions. The first configuration of the vehicle that will be flight tested has the large wing tip propellers relocated to an inboard wing station. A simplified structural dynamic model of the propulsion system has been generated and coupled with a beam model of the vehicle. Whirl flutter analyses have been performed, examining the stability of the isolated propulsion system and coupled to the beam model of the vehicle. Trimmed flight scenarios for the vehicle include straight and level flight and zero power windmilling conditions. The whirl flutter analyses for this configuration indicate that the configuration will be free of whirl flutter within the required flight envelope

    Coupled CFD/CSD Analysis of an Active-Twist Rotor in a Wind Tunnel with Experimental Validation

    Get PDF
    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code is presented for a second-generation active-twist rotor. High fidelity Navier-Stokes results for three configurations: an isolated rotor, a rotor with fuselage, and a rotor with fuselage mounted in a wind tunnel, are compared to lifting-line theory based comprehensive rotorcraft code calculations and wind tunnel data. Results indicate that CFD/CSD predictions of flapwise bending moments are in good agreement with wind tunnel measurements for configurations with a fuselage, and that modeling the wind tunnel environment does not significantly enhance computed results. Actuated rotor results for the rotor with fuselage configuration are also validated for predictions of vibratory blade loads and fixed-system vibratory loads. Varying levels of agreement with wind tunnel measurements are observed for blade vibratory loads, depending on the load component (flap, lag, or torsion) and the harmonic being examined. Predicted trends in fixed-system vibratory loads are in good agreement with wind tunnel measurements

    Coupled CFD/CSD Computation of Airloads of an Active-Twist Rotor

    Get PDF
    An unsteady Reynolds averaged Navier-Stokes analysis loosely coupled with a comprehensive rotorcraft code for blade trim and aeroelastic effects is presented for a second-generation Active-Twist Rotor. Mesh and temporal sensitives of computed airloads are evaluated. In the final paper, computed airloads will be compared with wind tunnel data for the Active-Twist Rotor test that is currently underway

    Continuous Trailing-Edge Flaps for Primary Flight Control of a Helicopter Main Rotor

    Get PDF
    The use of continuous trailing-edge flaps (CTEFs) for primary flight control of a helicopter main rotor is studied. A practical, optimized bimorph design with Macro-Fiber Composite actuators is developed for CTEF control, and a coupled structures and computational fluid dynamics methodology is used to study the fundamental behavior of an airfoil with CTEFs. These results are used within a comprehensive rotorcraft analysis model to study the control authority requirements of the CTEFs when utilized for primary flight control of a utility class helicopter. A study of the effect of blade root pitch index (RPI) on CTEF control authority is conducted, and the impact of structural and aerodynamic model complexity on the comprehensive analysis results is presented. The results show that primary flight control using CTEFs is promising; however, a more viable option may include the control of blade RPI, as well

    Whirl Flutter Stability and Its Influence on the Design of the Distributed Electric Propeller Aircraft X- 57

    Get PDF
    This paper studies the whirl flutter stability of the NASA experimental electric propulsion aircraft designated the X-57 Maxwell. whirl flutter stability is studied at two flight conditions: sea level at 2700 RPM to represent take-off and landing and 8000 feet at 2250 RPM to represent cruise. Two multibody dynamics analyses are used: CAMRAD II and Dymore. The CAMRAD II model is a semi-span X-57 model with a modal representation for the wing/pylon system. The Dymore model is a semi-span wing with a propeller composed of beam elements for the wing/pylon system that airloads can be applied to. The two multibody dynamics analyses were verified by comparing structural properties between each other and the NASTRAN analysis. For whirl flutter, three design revisions of the wing and pylon mount system are studied. The predicted frequencies and damping ratio of the wing modes show good agreements between the two analyses. Dymore tended to predict a slightly lower damping ratio as velocity increased for all three dynamic modes presented. Whirl flutter for the semi-span model was not present up to 500 knots for the latest design, well above the operating range of the X-57
    corecore