164 research outputs found
Optimality of the Width- Non-adjacent Form: General Characterisation and the Case of Imaginary Quadratic Bases
Efficient scalar multiplication in Abelian groups (which is an important
operation in public key cryptography) can be performed using digital
expansions. Apart from rational integer bases (double-and-add algorithm),
imaginary quadratic integer bases are of interest for elliptic curve
cryptography, because the Frobenius endomorphism fulfils a quadratic equation.
One strategy for improving the efficiency is to increase the digit set (at the
prize of additional precomputations). A common choice is the width\nbd-
non-adjacent form (\wNAF): each block of consecutive digits contains at
most one non-zero digit. Heuristically, this ensures a low weight, i.e.\ number
of non-zero digits, which translates in few costly curve operations. This paper
investigates the following question: Is the \wNAF{}-expansion optimal, where
optimality means minimising the weight over all possible expansions with the
same digit set?
The main characterisation of optimality of \wNAF{}s can be formulated in the
following more general setting: We consider an Abelian group together with an
endomorphism (e.g., multiplication by a base element in a ring) and a finite
digit set. We show that each group element has an optimal \wNAF{}-expansion if
and only if this is the case for each sum of two expansions of weight 1. This
leads both to an algorithmic criterion and to generic answers for various
cases.
Imaginary quadratic integers of trace at least 3 (in absolute value) have
optimal \wNAF{}s for . The same holds for the special case of base
and , which corresponds to Koblitz curves in
characteristic three. In the case of , optimality depends on
the parity of . Computational results for small trace are given
Esthetic Numbers and Lifting Restrictions on the Analysis of Summatory Functions of Regular Sequences
When asymptotically analysing the summatory function of a -regular
sequence in the sense of Allouche and Shallit, the eigenvalues of the sum of
matrices of the linear representation of the sequence determine the "shape" (in
particular the growth) of the asymptotic formula. Existing general results for
determining the precise behavior (including the Fourier coefficients of the
appearing fluctuations) have previously been restricted by a technical
condition on these eigenvalues.
The aim of this work is to lift these restrictions by providing a insightful
proof based on generating functions for the main pseudo Tauberian theorem for
all cases simultaneously. (This theorem is the key ingredient for overcoming
convergence problems in Mellin--Perron summation in the asymptotic analysis.)
One example is discussed in more detail: A precise asymptotic formula for the
amount of esthetic numbers in the first~ natural numbers is presented. Prior
to this only the asymptotic amount of these numbers with a given digit-length
was known.Comment: to appear in "2019 Proceedings of the Sixteenth Meeting on Analytic
Algorithmics and Combinatorics (ANALCO)
Compositions into Powers of : Asymptotic Enumeration and Parameters
For a fixed integer base , we consider the number of compositions of
into a given number of powers of and, related, the maximum number of
representations a positive integer can have as an ordered sum of powers of .
We study the asymptotic growth of those numbers and give precise asymptotic
formulae for them, thereby improving on earlier results of Molteni. Our
approach uses generating functions, which we obtain from infinite transfer
matrices. With the same techniques the distribution of the largest denominator
and the number of distinct parts are investigated
Automata in SageMath---Combinatorics meet Theoretical Computer Science
The new finite state machine package in the mathematics software system
SageMath is presented and illustrated by many examples. Several combinatorial
problems, in particular digit problems, are introduced, modeled by automata and
transducers and solved using SageMath. In particular, we compute the asymptotic
Hamming weight of a non-adjacent-form-like digit expansion, which was not known
before
Algorithmic counting of nonequivalent compact Huffman codes
It is known that the following five counting problems lead to the same
integer sequence~: the number of nonequivalent compact Huffman codes of
length~ over an alphabet of letters, the number of `nonequivalent'
canonical rooted -ary trees (level-greedy trees) with ~leaves, the number
of `proper' words, the number of bounded degree sequences, and the number of
ways of writing with integers
. In this work, we show that one can
compute this sequence for \textbf{all} with essentially one power series
division. In total we need at most additions and
multiplications of integers of bits, , or bit
operations, respectively. This improves an earlier bound by Even and Lempel who
needed operations in the integer ring or bit operations,
respectively
Canonical Trees, Compact Prefix-free Codes and Sums of Unit Fractions: A Probabilistic Analysis
For fixed , we consider the class of representations of as sum of
unit fractions whose denominators are powers of or equivalently the class
of canonical compact -ary Huffman codes or equivalently rooted -ary plane
"canonical" trees. We study the probabilistic behaviour of the height (limit
distribution is shown to be normal), the number of distinct summands (normal
distribution), the path length (normal distribution), the width (main term of
the expectation and concentration property) and the number of leaves at maximum
distance from the root (discrete distribution)
Questions on the Structure of Perfect Matchings inspired by Quantum Physics
We state a number of related questions on the structure of perfect matchings.
Those questions are inspired by and directly connected to Quantum Physics. In
particular, they concern the constructability of general quantum states using
modern photonic technology. For that we introduce a new concept, denoted as
inherited vertex coloring. It is a vertex coloring for every perfect matching.
The colors are inherited from the color of the incident edge for each perfect
matching. First, we formulate the concepts and questions in pure
graph-theoretical language, and finally we explain the physical context of
every mathematical object that we use. Importantly, every progress towards
answering these questions can directly be translated into new understanding in
quantum physics.Comment: 10 pages, 4 figures, 6 questions (added suggestions from peer-review
- …