279 research outputs found

    Kadanoff-Baym Equations with Initial Correlations

    Full text link
    The Kadanoff-Baym equations (KBE) are usually derived under the assumption of the weakening of initial correlations (Bogolyubov's condition) and, therefore, fail to correctly describe the short time behavior. We demonstrate that this assumption is not necessary. Using functional derivatives techniques, we present a straightforward generalization of the KBE which allows to include arbitrary initial correlations and which is more general than previous derivations. As a result, an additional collision integral is obtained which is being damped out after a few collisions. Our results are complemented with numerical investigations showing the effect of initial correlations.Comment: 10 pages, 3 figures, to be published in ``Progress in Nonequilibrium Green's Functions'', M. Bonitz (Ed.), World Scientific, Singapore 2000, uses sprocl.st

    Fluid Modes of a Spherically Confined Yukawa Plasma

    Full text link
    The normal modes of a three-dimensional Yukawa plasma in an isotropic, harmonic confinement are investigated by solving the linearized cold fluid equations. The eigenmodes are found analytically and expressed in terms of hypergeometric functions. It is found that the mode frequencies solely depend on the dimensionless plasma parameter ξ=κR\xi=\kappa R, where RR is the plasma radius and κ\kappa the inverse screening length. The eigenfrequencies increase monotonically with ξ\xi and saturate in the limit ξ\xi\to\infty. Compared with the results in the Coulomb limit~[D. H. E. Dubin, Phys. Rev. Lett. \textbf{66}, 2076 (1991)], we find a new class of modes characterized by the number nn which determines the number of radial nodes in the perturbed potential. These modes originate from the degenerate bulk modes of the Coulomb system. Analytical formulas for the eigenfrequencies are derived for limiting cases

    Ferromagnetic behavior in magnetized plasmas

    Full text link
    We consider a low-temperature plasma within a newly developed MHD Fluid model. In addition to the standard terms, the electron spin, quantum particle dispersion and degeneracy effects are included. It turns out that the electron spin properties can give rise to Ferromagnetic behavior in certain regimes. If additional conditions are fulfilled, a homogenous magnetized plasma can even be unstable. This happen in the low-temperature high-density regime, when the magnetic properties associated with the spin can overcome the stabilizing effects of the thermal and Fermi pressure, to cause a Jeans like instability.Comment: 4 pages, 1 figur

    Dynamic ion structure factor of warm dense matter

    Get PDF
    The dynamics of the ion structure in warm dense matter is determined by molecular dynamics simulations using an effective ion-ion potential. This potential is obtained from ab initio simulations and has a strong short-range repulsion added to a screened Coulomb potential. Models based on static or dynamic local field corrections are found to be insufficient to describe the data. An extended Mermin approach, a hydrodynamic model, and the method of moments with local constraints are capable of reproducing the numerical results but have rather limited predictive powers as they all need some numerical data as input. The method of moments is found to be the most promising

    Coupled mode effects on energy transfer in weakly coupled, two-temperature plasmas

    Get PDF
    The effects of collective modes on the temperature relaxation in fully ionized, weakly coupled plasmas are investigated. A coupled mode (CM) formula for the electron-ion energy transfer is derived within the random phase approximation and it is shown how it can be evaluated using standard methods. The CM rates are considerably smaller than rates based on Fermi's golden rule for some parameters and identical for others. It is shown how the CM effects are connected to the occurrence of ion acoustic modes and when they occur. Interestingly, CM effects occur also for plasmas with very high electron temperatures; a regime, where the Landau–Spitzer approach is believed to be accurate

    Short time dynamics with initial correlations

    Get PDF
    The short-time dynamics of correlated systems is strongly influenced by initial correlations giving rise to an additional collision integral in the non-Markovian kinetic equation. Exact cancellation of the two integrals is found if the initial state is thermal equilibrium which is an important consistency criterion. Analytical results are given for the time evolution of the correlation energy which are confirmed by comparisons with molecular dynamics simulations (MD)

    Self-diffusion in sheared colloidal suspensions: violation of fluctuation-dissipation relation

    Full text link
    Using memory-function formalism we show that in sheared colloidal suspensions the fluctuation-dissipation theorem for self-diffusion, i.e. Einstein's relation between self-diffusion and mobility tensors, is violated and propose a new way to measure this violation in Brownian Dynamics simulations. We derive mode-coupling expressions for the tagged particle friction tensor and for an effective, shear-rate dependent temperature
    corecore