4,177 research outputs found
Analysis of the Reaction Rate Coefficients for Slow Bimolecular Chemical Reactions
Simple bimolecular reactions are analyzed
within the framework of the Boltzmann equation in the initial stage of a
chemical reaction with the system far from chemical equilibrium. The
Chapman-Enskog methodology is applied to determine the coefficients of the
expansion of the distribution functions in terms of Sonine polynomials for
peculiar molecular velocities. The results are applied to the reaction
, and the influence of the non-Maxwellian
distribution and of the activation-energy dependent reactive cross sections
upon the forward and reverse reaction rate coefficients are discussed.Comment: 11 pages, 5 figures, to appear in vol.42 of the Brazilian Journal of
Physic
Strong Attraction between Charged Spheres due to Metastable Ionized States
We report a mechanism which can lead to long range attractions between
like-charged spherical macroions, stemming from the existence of metastable
ionized states. We show that the ground state of a single highly charged
colloid plus a few excess counterions is overcharged. For the case of two
highly charged macroions in their neutralizing divalent counterion solution we
demonstrate that, in the regime of strong Coulomb coupling, the counterion
clouds are very likely to be unevenly distributed, leading to one overcharged
and one undercharged macroion. This long-living metastable configuration in
turn leads to a long range Coulomb attraction.Comment: REVTEX-published versio
Field theory of self-avoiding walks in random media
Based on the analogy with the quantum mechanics of a particle propagating in
a {\em complex} potential, we develop a field-theoretical description of the
statistical properties of a self-avoiding polymer chain in a random
environment. We show that the account of the non-Hermiticity of the quantum
Hamiltonian results in a qualitatively different structure of the effective
action, compared to previous studies. Applying the renormalisation group
analysis, we find a transition between the weak-disorder regime, where the
quenched randomness is irrelevant, and the strong-disorder regime, where the
polymer chain collapses. However, the fact that the renormalised interaction
constants and the chiral symmetry breaking regularisation parameter flow
towards strong coupling raises questions about the applicability of the
perturbative analysis.Comment: RevTeX, 9 pages; accepted for publication in J. Phys.
Irreversible Processes in Inflationary Cosmological Models
By using the thermodynamic theory of irreversible processes and Einstein
general relativity, a cosmological model is proposed where the early universe
is considered as a mixture of a scalar field with a matter field. The scalar
field refers to the inflaton while the matter field to the classical particles.
The irreversibility is related to a particle production process at the expense
of the gravitational energy and of the inflaton energy. The particle production
process is represented by a non-equilibrium pressure in the energy-momentum
tensor. The non-equilibrium pressure is proportional to the Hubble parameter
and its proportionality factor is identified with the coefficient of bulk
viscosity. The dynamic equations of the inflaton and the Einstein field
equations determine the time evolution of the cosmic scale factor, the Hubble
parameter, the acceleration and of the energy densities of the inflaton and
matter. Among other results it is shown that in some regimes the acceleration
is positive which simulates an inflation. Moreover, the acceleration decreases
and tends to zero in the instant of time where the energy density of matter
attains its maximum value.Comment: 13 pages, 2 figures, to appear in PR
Interacting Growth Walk - a model for hyperquenched homopolymer glass?
We show that the compact self avoiding walk configurations, kinetically
generated by the recently introduced Interacting Growth Walk (IGW) model, can
be considered as members of a canonical ensemble if they are assigned random
values of energy. Such a mapping is necessary for studying the thermodynamic
behaviour of this system. We have presented the specific heat data for the IGW,
obtained from extensive simulations on a square lattice; we observe a broad
hump in the specific heat above the -point, contrary to expectation.Comment: 4 figures; Submitted to PR
Two-Dimensional Polymers with Random Short-Range Interactions
We use complete enumeration and Monte Carlo techniques to study
two-dimensional self-avoiding polymer chains with quenched ``charges'' .
The interaction of charges at neighboring lattice sites is described by . We find that a polymer undergoes a collapse transition at a temperature
, which decreases with increasing imbalance between charges. At the
transition point, the dependence of the radius of gyration of the polymer on
the number of monomers is characterized by an exponent , which is slightly larger than the similar exponent for homopolymers. We
find no evidence of freezing at low temperatures.Comment: 4 two-column pages, 6 eps figures, RevTex, Submitted to Phys. Rev.
Collapse of Randomly Self-Interacting Polymers
We use complete enumeration and Monte Carlo techniques to study
self--avoiding walks with random nearest--neighbor interactions described by
, where is a quenched sequence of ``charges'' on the
chain. For equal numbers of positive and negative charges (), the
polymer with undergoes a transition from self--avoiding behavior to a
compact state at a temperature . The collapse temperature
decreases with the asymmetry Comment: 8 pages, TeX, 4 uuencoded postscript figures, MIT-CMT-
Trapping microparticles in a structured dark focus
We experimentally demonstrate stable trapping and controlled manipulation of
silica microspheres in a structured optical beam consisting of a dark focus
surrounded by light in all directions - the so-called Dark Focus Tweezer.
Results from power spectrum and potential analysis demonstrate the
non-harmonicity of the trapping potential landspace, which is reconstructed
from experimental data in agreement to Lorentz-Mie numerical simulations.
Applications of the dark tweezer in levitated optomechanics and biophysics are
discussed.Comment: Final versio
- …